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Abstract

Neuroimaging enables rich noninvasive measurements of human brain activity, but translating
such data into neuroscientific insights and clinical applications requires complex analyses and
collaboration among a diverse array of researchers. The open science movement is reshaping
scientific culture and addressing the challenges of transparency and reproducibility of research.
To advance open science in neuroimaging the Organization for Human Brain Mapping created
the Committee on Best Practice in Data Analysis and Sharing (COBIDAS), charged with
creating a report that collects best practice recommendations from experts and the entire brain
imaging community. The purpose of this work is to elaborate the principles of open and
reproducible research for neuroimaging using Magnetic Resonance Imaging (MRI), and then
distill these principles to specific research practices. Many elements of a study are so varied that
practice cannot be prescribed, but for these areas we detail the information that must be
reported to fully understand and potentially replicate a study. For other elements of a study, like
statistical modelling where specific poor practices can be identified, and the emerging areas of
data sharing and reproducibility, we detail both good practice and reporting standards. For each
of seven areas of a study we provide tabular listing of over 100 items to help plan, execute,
report and share research in the most transparent fashion. Whether for individual scientists, or
for editors and reviewers, we hope these guidelines serve as a benchmark, to raise the
standards of practice and reporting in neuroimaging using MRI.
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1. Introduction

In many areas of science and in the public sphere there are growing concerns about the
reproducibility of published research. From early claims by John loannidis in 2005 that “most
published research findings are false” [loannidis2005] to the recent work by the Open Science
Collaboration, which attempted to replicate 100 psychology studies and succeeded in only 39
cases [OpenScienceCollaboration2015], there is mounting evidence that scientific results are
less reliable than widely assumed. As a result, calls to improve the transparency and
reproducibility of scientific research have risen in frequency and fervor.

In response to these concerns, the Organization for Human Brain Mapping (OHBM) released
“OHBM Council Statement on Neuroimaging Research and Data Integrity” in June 2014, at the
same time creating the Committee on Best Practices in Data Analysis and Sharing (COBIDAS).
The committee was charged with (i) identifying best practices of data analysis and data sharing
in the brain mapping community, (ii) preparing a white paper organizing and describing these
practices, and (iii) seeking input from the OHBM community before (iv) publishing these
recommendations.

COBIDAS focuses on data analysis and statistical inference procedures because they play an
essential role in the reliability of scientific results. Brain imaging data is complicated because of
the many processing steps and a massive number of measured variables. There are many
different specialised analyses investigators can choose from, and analyses often involve cycles
of exploration and selective analysis that can bias effect estimates and invalidate inference
[Kriegeskorte2009, Carp2012].

Beyond data analysis, COBIDAS also addresses best practices in data sharing. The sharing of
data can enable reuse, saving costs of data acquisition and making the best use of scarce
research funding® [Macleod2014]. In addition, data sharing enables other researchers to
reproduce results using the same or different analyses, which may reveal errors or bring new
insights overlooked initially (see, e.g., [LeNoury2015]). There is also evidence that data sharing
is associated with better statistical reporting practices and stronger empirical evidence
[Wicherts2011]. In short, data sharing fosters a scientific culture of transparency.

While many recent publications prescribe greater transparency and sharing of data (see, e.g., a
pair of editorials in Science & Nature [Journals2014,McNutt2014]), such works are general to all
of science or do not focus on human neuroimaging specifically (though see
[Poline2012,Poldrack2014]). Thus the purpose of this paper is to elaborate some principles of
open and reproducible research for the areas of practice relevant to the OHBM community. To

! http://www.humanbrainmapping.org/OHBMDatalntegrity2014.
2 The Lancet’s series on “Research: increasing value, reducing waste”,
http://www.thelancet.com/series/research.
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make these principles practical and usable, we created explicit lists of items to be shared
(Appendix D).

Working closely with OHBM Council, a “Proposed” version of this document was prepared by
COBIDAS and first posted for comment in October 2015. Comments were collected via email
and the COBIDAS blog® and a revised document* presented to the membership for an up/down
vote in May 2016; 96% positive ballots were received. We note that while best practice white
papers like this are not uncommon (see, e.g., [Alsop2014,Kanal2013,Gilmore2013]), they are
generally authored by and represent the consensus of a small committee or at most a
special-interest section of a larger professional body. Hence we are excited to present this work
with the explicit participation and support of the OHBM membership.

1.1. Approach

There are different responses to the perceived crisis of reproducibility, with some simply letting
the problem “self-correct’ as reviewers and readers become more aware of the problem, to more
transformative measures like using blinded analyses or preregistration. In a blinded analysis all
preprocessing, modelling and results generation is conducted with experimental labels hidden
or scrambled, only being revealed after the analysis is fixed [MacCoun2015], while in
preregistration all research hypotheses and analysis plans are published before data are
collected, [Nosek2014].

The pragmatic approach behind this report is to increase the transparency of how research has
been executed. Such transparency can be accomplished by comprehensive sharing of data,
research methods and finalized results. This both enables other investigators to reproduce
findings with the same data, better interrogate the methodology used and, ultimately, makes
best use of research funding by allowing reuse of data.

The reader may be daunted by the sheer scale and detail of recommendations and checklists in
this work (Appendix D). However we expect that any experienced neuroimaging researcher who
has read a paper in depth, and been frustrated by the inevitable ambiguity or lack of detail, will
appreciate the value of each entry. We do not intend for these lists to become absolute,
inflexible requirements for publication. However they are the product of extensive deliberation
by this panel of experts, and represent what we considered most effective and correct; hence,
deviations from these practices may warrant explanation. Finally, we hope these lists can serve
as tools for reviewers, e.g. as a reference for the importance of these items, and for editors and
publishers, who can consider how this necessary detail can be conveyed without stringent word
limits.

3 See http://www.humanbrainmapping.org/cobidas.
4 The present document differs from that voted on only in formating changes, typographical corrections, and
the update of this particular sentence.
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1.2. Scope

While the OHBM community is diverse, including users of a variety of brain imaging modalities,
for this effort we focus exclusively on MRI. This encompasses a broad range of work, including
task-based and resting-state functional MRI (fMRI), analyzed voxel-wise and on the surface,
structural and diffusion MRI, but excludes other widely used methods like PET, EEG & MEG.
We found that practice in neuroimaging with MR can be broken into seven areas that roughly
span the entire enterprise of a study: (1) experimental design reporting, (2) image acquisition
reporting, (3) preprocessing reporting, (4) statistical modeling, (5) results reporting, (6) data
sharing, and (7) reproducibility.

Reproducibility has different and conflicting definitions (see Appendix B), but in this work we
make the distinction between reproducing results with the same data [Peng2011] versus
replicating a result with different data and possibly methods. Hence while this entire work is
about maximizing replicability, the last section focuses specifically on reproducibility at the
analysis-level.

This paper is structured around these areas, and for each we explore both general principles of
open and reproducible research, as well as specific recommendations in a variety of settings.
As the respective titles imply, for experimental design, data acquisition and preprocessing,
studies are so varied that we provide general recommendations without recommending
particular practices. Thus these sections focus mostly on thorough reporting and little on best
practice. In contrast, for statistical modeling there are areas like task fMRI where mature
methodology allows the clear identification of best practices. Likewise for the areas of data
sharing, replication and reproducibility we focus exactly on those emerging practices that need
to become prevalent.

We ask that authors challenge themselves: “If | gave my paper to a colleague, would the text
and supplementary materials be sufficient to allow them to prepare the same stimuli, acquire
data with same properties, preprocess in a similar manner and produce the same models and
types of inferences as in my study?” This is an immense challenge! The purpose of this work is
to guide researchers towards this goal and to provide a framework to assess how well a study
meets this challenge.

2. Experimental Design Reporting

2.1. Scope

In this section we consider all aspects of the planned and actual experimental manipulation of
the subject. This includes the type and temporal ordering of stimuli, feedback to be recorded
and any subject-adaptive aspects of the experiment. It also encompasses basic information on

OHBM COBIDAS Report 5 v1.0, 2016/5/19



the experiment such as duration, number of subjects used and selection criterion for the
subjects. It is impossible to prescribe the “right” design for all experiments, and so instead the
focus is on the complete reporting of all facets of the design.

2.2. General Principles

For experimental design, the goal of reproducible research requires the reporting of how the
subjects were identified, selected, and manipulated. This enables a critical reader to evaluate
whether the findings will generalize to other populations, and facilitates the efforts of others to
reproduce and replicate the work.

2.3. Lexicon of fMRI Design

While other areas of these guidelines, like MRI physics and statistical modeling, have rather well
defined terminology, we find there is substantial variation in the use of experimental design
terms used in fMRI publications. Thus Box 2.1 provides terminology that captures typical use in
the discipline. Since the analysis approach is dependent on the fMRI design, providing accurate
and consistent characterization of the design will provide greater clarity.

There is often confusion between block and mixed block/event designs [Petersen2012], or block
designs composed of discrete events. Thus we recommend reserving the term “block design”
for paradigms comprised of continuous stimuli (e.g. flashing checkerboard) or unchanging
stimuli presented for the entire length of a block (generally at least 8 seconds). All other designs
comprise variants of event-related designs and must have their timing carefully described.

Box 2.1. fMRI Terminology

Session. The experimental session encompasses the time that the subject enters the
scanner until they leave the scanner. This will usually include multiple scanning runs with
different pulse sequences, including structural, diffusion imaging, functional MRI,
spectroscopy, etc.

Run. A run is a period of temporally continuous data acquisition using a single pulse
sequence.

Volume. A volume (or alternatively “frame”) is single 3-dimensional image acquired as part of
arun.

Condition. A condition is a set of task features that are created to engage a particular mental
state.

Trial. A trial (or alternatively “event”) is a temporally isolated period during which a particular
condition is presented, or a specific behavior is observed.

OHBM COBIDAS Report 6 v1.0, 2016/5/19



Event. The term “trial” and “event” are often interchangeable. However, in certain situations of
‘compound-trials,” a trial will consist of multiple subunits; for example, a working memory task
may contain subunits of encoding, delay, and retrieval. In these cases the subunits are
labeled as “events” and the “trial” is defined as the overarching task.

Block. A block (or alternatively “epoch”) is a temporally contiguous period when a subject is
presented with a particular condition.

2.4, Design Optimization

Especially with an event-related design with multiple conditions, it can be advantageous to
optimize the timing and order of the events with respect to statistical power, possibly subject to
counterbalancing and other constraints [Dale1999, Wager2003]. It is essential to specify
whether the target of optimization is detection power (i.e. ability to identify differences between
conditions) or estimation efficiency (i.e. ability to estimate the shape of the hemodynamic
response, which requires jittering) [Liu2001]. It is likewise advisable to optimize your designs to
minimize the correlation between key variables. For example, in model-based or computational
fMRI experiments, variables such as reward, prediction error and choices will usually be highly
correlated unless the design has been tuned to minimise this dependence. Be sure to include all
possible covariates in a single statistical model to ensure variance is appropriately partitioned
between these variables.

2.5. Power Analysis

The positive predictive value—the probability that an alternative hypothesis is true given a
significant test—depends on the power of the study [loannidis2005], and underpowered studies
have been found to been endemic in neuroscience as a whole [Button2013]. Power analysis for
imaging is difficult as the outcome is typically the entire brain image, and not a single univariate
measure [Mumford2012]. However there are power analysis tools available to account for intra-
and inter-subject fMRI variance at each voxel [Mumford2008]°, as well as tools that account for
the spatial structure of the signal [Joyce2012, Durnez2014]°. Researchers hence can and
should provide a realistic power computation that corresponds to the primary analysis of your
study.

5 http://fmripower.org.
6 hitps://sourceforge.net/projects/powermap & https://neuropower.shinyapps.io/neuropower respectively.
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2.6. Subjects

The population from which the subjects are sampled is critical to any experiment, not just those
with clinical samples. Be sure to note any specific sampling strategies that limited inclusion to a
particular group (e.g. laboratory members, undergraduates at your university).

One should take special care with defining a “Normal” vs. “Healthy” sample. Screening for
lifetime neurological or psychiatric iliness (e.g. as opposed to “current”) could have unintended
consequences. For example, in older subjects this could exclude up to 50% of the population
[Kessler2005] and this restriction could induce a bias towards a ‘super healthy,’ thus limiting the
generalization to the population.

2.7. Behavioral Performance

The successful execution of a task is essential for interpreting the cognitive effects of a task.
Report behavioral measures in and out of the scanner, measures that are appropriate for the
task at hand (e.g. response times, accuracy). For example, provide statistical summaries over
subjects like mean, range and/or standard deviation. Note any pre-scan training, the setting
(e.g. mock scanner vs. bench) and any training goals.

3. Acquisition Reporting
3.1. Scope

This section concerns everything relating to the manner in which the image data is collected on
each subject. Again we do not attempt to prescribe best MRI sequences to use, but focus on the
reporting of acquisition choices.

3.2. General Principles

Research can only be regarded as transparent when the reader of a research report can easily
find and understand the details of the data acquisition. This is necessary in order to fully
interpret results and grasp potential limitations. For the work to be reproducible, there must be
sufficient detail conveyed to actually plan a new study, where data collected will have, e.g.,
similar resolution, contrast, and noise properties as the original data.

More so than many sections in this document, MRI acquisition information can be easily

organized in ‘checklist’ form (see Appendix D). Thus in the remainder of this section we only
briefly review the categories of information that should be conveyed.
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3.3. Device Information

One fundamental aspect of data is the device used to acquire it. Thus every study using MRI
should report basic information on the scanner, like make and model, field strength, and details
of the coil used, etc.

3.4. Acquisition-Specific Information

Each acquisition is described by a variety of parameters that determine the pulse sequence, the
field of view, resolution, etc. For example, image type (gradient echo, spin echo, with EPI or
spiral trajectories; TE, TR, flip angle, acquisition time), parallel imaging parameters, use of field
maps, and acquisition orientation are all critical information. Further details are needed for
functional acquisitions (e.g. volumes per run, discarded dummy volumes) and diffusion
acquisitions (e.g. number of directions and averages and magnitude and number of b-values
[Jones2012]).

3.5. Format for sharing

While there is some overlap with Section 7. Data Sharing, there are sufficient manufacturer- and
even model-specific details that we consider here related to data format. When providing
acquisition information in a manuscript keep in mind that readers may use a different make of
scanner, and thus you should minimize the use of vendor-specific terminology. To provide
comprehensive acquisition detail we recommend exporting vendor-specific protocol definitions
or “exam cards” and provide them as supplementary material.

When primary image data are being shared, a file format should be chosen that provides
detailed information on the respective acquisition parameters (e.g. DICOM). If it is impractical to
share the primary image data in such a form, retain as much information about the original data
as possible (e.g. via NIfTI header extensions, or “sidecar” files). However, sensitive personal
information in the acquisition metadata should be carefully removed through appropriate
anonymization procedures before sharing (see Section 6. Data Sharing).

4. Preprocessing Reporting

4.1. Scope

This section concerns the extensive adjustments and “denoising” steps neuroimaging data
require before useful information can be extracted. In fMRI, the two most prominent of these
preprocessing steps are head-motion correction and intersubject registration (i.e., spatial
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normalisation), but there are many others. In diffusion imaging, motion correction, eddy current
correction, skull stripping, and fitting of tensors (least squares, ROBUST, etc.) or more complex
diffusion models are also key steps.

4.2. General Principles

As with other areas of practice, good reporting here requires authors to clearly detail each
manipulation done to the data before a statistical or predictive model is fit. This is essential for
reproducibility, as the exact outcome of preprocessing is dependent on the exact steps, their
order and the particular software used. Moreover, the vast array of reprocessing options gives
ample opportunity for p-hacking [Simmons2011] and thus it is vital to constrain choices and
establish fixed preprocessing protocols whenever possible.

4.3. Software Issues

Software versions. Different tools implementing the same methodological pipeline, or different
versions of the same tool, may produce different results [Gronenschild2012]. Thus ensure that
the exact name, version, and URL of all the tools involved in the analysis are accurately
reported. It is essential to provide not just the major version number (e.g., SPM12, or FSL 5.0)
but indicate the exact version (e.g. SPM12 revision 6225, or FSL 5.0.8). The version of software
interpreters, e.g. Matlab or Python, should also be included as well as compilation conditions
when known. To avoid ambiguities on the tool name, consider adding a Research Resource
Identifier (RRID7) [Bandrowski2015] citation for each tool used in addition to reporting the
version. RRIDs index everything from software to mouse strains, and provide a consistent and
searchable reference.

In-house pipelines & software. When using a combination of software tools, be sure to detail the
different functions utilized from each tool (e.g., SPM’s realign tool followed by FreeSurfer’s
boundary-based registration; see Reproducibility section for more on pipelines). In-house
software should be described in detail, giving explicit details (or reference to peer-reviewed
citation with such details) for any processing steps/operations carried out. Public release of
in-house software through an open code repository is strongly recommended (e.g. Bitbucket or
Github).

Quality control. Quality control criteria, such as visual inspection and automated checks (e.g.,
motion parameters), should be specified. If automated checks are considered, metric and
criteria thresholds should be provided. If data has been excluded, i.e., due to scrubbing or other
denoising of fMRI time series or removal of slices or volumes in diffusion imaging data, this
should be reported.

7 http://www.force11.org/group/resource-identification-initiative & https://scicrunch.org/resources.
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Ordering of steps. The ordering of preprocessing steps (e.g., slice time correction before motion
correction) should be explicitly stated.

Handling of exceptional data. Sometimes individual subjects will have problems, e.g. with brain
extraction or intersubject registration. Any subjects that require unique preprocessing operations
or settings should be justified and explained clearly, including the number of subjects in each
group for case-control studies.

5. Statistical Modeling & Inference

5.1. Scope

This section covers the general process of extracting results from data, distilling down vast
datasets to meaningful, interpretable summaries. Usually this consists of model fitting followed
by statistical inference or prediction. Models relate the observable data to unobservable
parameters, while inference quantifies the uncertainty in the estimated parameter values,
including hypothesis tests of whether an observed effect is distinguishable from chance
variation. Inference can also be seen as part of making predictions about unseen data, from the
same or different subjects. Note that while we make a clean distinction between preprocessing
and modeling, there is some overlap (e.g. movement can be a preprocessing “correction” or part
of a model) and they can in fact interact [Strother2002].

5.2. General Principles

For statistical modeling and inference, the guiding principle of openness dictates that the reader
of published work can readily understand what statistical model was used to draw the
conclusions of the paper. Whether accidental or intentional (i.e. for brevity), omission of
methodological details needed to reproduce the analyses violates these principles. For maximal
clarity, be sure to describe all data manipulation and modeling in the methods section
[Gopen1990]. For maximal transparency, report all regions of interest (ROIs) and/or
experimental conditions examined as part of the research, so that the reader can gauge the
degree of any HARKing (Hypothesizing After the Results are Known) [Kerr1998]; to absolutely
minimize HARKIng, register your hypothesis and analysis before exploring the data.

5.3. Assumptions

Every modelling and inference method described below makes assumptions about the data
analyzed. Take the time to understand assumptions and the implications on your results. Just to
name a few for linear models: The correct model (no missing variables), additive model (no
missing interactions), normality of errors (no outliers), etc. [Luo2003]. In group analyses, pay
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special attention to reversal paradoxes where an effect can be flipped if an important covariate
is omitted [Tu2008]. And always take care when removing outliers, as informative observations
may be discarded. Consider using the analysis that has the weakest assumptions while still
providing the needed inference, e.g. tools like permutation or bootstrap (e.g.
[Eklund2015,Bellec2010].

5.4, Software

See the previous section for details on how to describe the exact software and pipeline used.

5.5. Mass Univariate Modelling

A simple univariate model fit to each voxel or surface element is known as a mass univariate
modelling approach, and is an essential tool for everything from task fMRI, structural MRI
measures like Voxel Based Morphometry, scalar diffusion measures like Fractional Anisotropy
or even resting state fMRI, when measured with low frequency variance (see Other
Resting-State Analyses below). Regardless of the type of data, a mass-univariate linear model
is specified by five types of information: Dependent variables, independent variables, model,
estimation method and inference method (where inference refers to quantification of uncertainty
of estimated parameters and hypothesis testing).

While the dependent variable (or response) may be unambiguous (e.g. for T2* BOLD), be sure
to identify it in any nonstandard analysis. ltemize each independent (or explanatory) variable in
each model used. In a first level fMRI model, this includes the usual condition effects, as well as
motion regressors added to explain nuisance variation. In a second level or group model,
independent variables include the group assignment (e.g. patient vs. control) or other
between-subject effects that may or may not be of interest (e.g. age or sex). Report non-trivial
contrasts, linear combinations of independent variables, that are used to interrogate the
experimental effect of interest. Variables generally do not need to be centered?, but do indicate
how and if this was done.

While software may make the model and estimation method seem ‘automatic’, a short
description is needed for a complete scientific report. See Appendix C for examples of short
descriptions of commonly used task fMRI models. Beyond the mass univariate model, there is
growing use of other types of models, including local multivariate, whole-brain multivariate, etc.
Regardless of the model, be sure to note the essential details of the estimation procedure.

The inference method is used to flag some voxels or elements as “active” or “different”, as
distinguished from background noise, and is a crucial final step. In brain imaging, inference

8 http://mumford.fmripower.org/mean_centering.
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usually amounts to a thresholding procedure, though if ROIs are used, it should also include
computation of confidence or credible intervals. ROIs can be defined based on anatomy or
previous literature [Poldrack2007], or based on functional results with great care and attention to
circularity (see Extracted Data below).

While the dangers of multiple testing are generally well understood, one review found only 59%
of studies used a correction for multiple testing [Carp2012]. While there are domains where
stringent corrections are not suitable (e.g. presurgical fMRI, where false positive risk has to be
balanced against the dangers of missing eloquent tissue), every study needs to address the
issue, using a standard correction method or defending the lack of correction. Thus clearly state
the type of inference and the manner of multiple-testing correction or reasons for no correction.
Note that the inference method description “6% cluster wise inference” doesn’t specify the
cluster-forming threshold nor the multiple-testing correction measure (e.g. familywise or false
discovery rate). Also describe the volume, sub-volume, or surface domain for which
multiple-testing correction has been performed, and whether multiple volumes/ROls have been
corrected for.

5.6. Connectivity Analyses

Functional and effective connectivity encompass a broad range of methods, from data-driven
multivariate or clustering methods on high resolution voxel-wise data, to highly structured
physiological-based models on a small number of regions. Methods are still evolving for
resting-state fMRI in particular, but careful execution of a study requires considering topics
similar to task fMRI modeling: response variables, model, estimation method and inference
method.

The goal of most connectivity analyses is to understand the relationships among multiple
response (dependent) variables. These variables can be defined by regions-of-interest (ROIs),
in which case be sure to report the number of ROIs and how the ROls are defined (e.g. citable
anatomical atlas; auxiliary fMRI experiments). State whether analyses were carried out as a
voxelwise whole-brain analysis or by using cortical surfaces or CIFTI ‘grayordinates’ (surface
vertices + subcortical gray matter voxels [Glasser2013]). For seed-based analyses, or
small-scale (e.g. Bayes Net) methods, provide the rationale and method for selecting the
particular ROls. Carefully describe how time series were attributed to each ROI (e.g. averaging,
median, or eigenvariate), and detail any additional (temporal or spatial) filtering or
transformations (e.g. into wavelet coefficients) used, or nuisance variables (e.g. motion
parameters) ‘pre-regressed’ out of the data.

A number of exploratory multivariate methods are used to understand high-dimensional fMRI
data in a lower dimensional space. These include Principal Component Analysis,
Multidimensional Scaling, Self Organizing Maps, and Independent Component Analysis (ICA),
of which ICA is probably the most widely used. For any such method report the model variant
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(e.g. spatial or temporal ICA), the estimation method (i.e. algorithm) and the number of
dimensions or components used and, crucially, how this number was selected. ICA fitting and
interpretation depends on choices about scaling (a.k.a. variance normalization), both to the data
before fitting and as a constraint between spatial and temporal components; describe the type
of scaling (i.e. variance normalization) applied to data and extracted components. Always report
how the components were sorted and selected for analysis, whether for the primary analysis or
as part of a denoising procedure; if using a post-hoc task regression model supply associated
task model details (see above).

As any nuisance variation jointly influencing multiple voxels/regions can be mistaken for brain
connectivity, it is essential that careful preprocessing has been applied, including artifact
removal (See Section 3).

For many connectivity analyses the model is nothing more than the summary measure of
dependence, e.g. Pearson’s (full) correlation, partial correlation, mutual information, etc.
However, be sure to note any further transformations (e.g. Fisher’s Z-transform, regularization of
partial correlation estimates). For seed-based analyses, describe the voxel-wise statistic or
regression model (and other covariates) used. For regression-based group ICA analyses (“dual
regression”, or “PCA-based back-reconstruction”), clearly describe how the per-subject images
are created. As with task-fMRI, any group analysis should be described in terms of dependent
variables, independent variables, model, estimation method, and inference method. For graph
analysis methods based on binary connection matrices, state how thresholding was done and
consider the sensitivity of your results to the particular threshold used. While lag-based methods
like Granger have been criticised for fMRI [Smith2012], they remain suitable for EEG and MEG.

For functional connectivity, inference typically focuses on making statements comparing two or
more groups of subjects or assessing the impact of a covariate. Ensure that it is clear what is
the response being fed into the group model. For some connectivity analyses, like Structural
Equation Modelling or Dynamic Causal Modelling, the inference concerns selecting among a set
of models. Be sure to justify and enumerate the models considered and how they were
compared; describe how evidence for model selection was aggregated over multiple subjects.
Discuss the prior distributions used and their impact on the result. For graph-based analyses,
detail the construction of adjacency matrices (i.e. what was binarized and how), or if using
weighted measures, how the weights are computed. Note the problems of comparing networks
of different size or overall connection density [vanWijk2010].

5.7. Other Resting-State Analyses

The analysis of resting state data does not necessarily incorporate connectivity. Methods like
Amplitude of Low Frequency Fluctuations (ALFF) [Zang2007] and fractional ALFF (fALFF)
[Zou2008] summarise brain activity with absolute (ALFF) or relative (fALFF) BOLD variance,
and Regional Homogeneity (ReHo) [Zang2004] measures local consistency of signals. These
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methods produce a map per subject that can be analyzed with a mass univariate model (see
above).

5.8. Multivariate Modelling & Predictive Analysis

Predictive methods focus on estimating an outcome for each experimental trial, block or subject,
often using multivariate models. Multivariate methods exploit dependencies between many
variables to overcome the limitations of mass univariate models, often providing better
explanatory or predictive models. In brain imaging, predictive methods are often called decoding
or multi-voxel pattern analyses [Norman2006]; an example of a multivariate analysis is
representational similarity analysis [Kriegeskorte2008]. A complete description should include
details of the following: Target values, features, predictive model, and training and validation
method.

The target values are the outcomes or values to be predicted, which may be discrete or
continuous. It should be made clear exactly what is being predicted, and what are the relative
frequencies of this variable (e.g. proportions in each group, or a histogram for a continuous
target). Unbalanced group sizes are not a problem but require appropriate evaluation measures,
as described in the next section.

The features are the variables used to create the prediction, and often are not the raw data
themselves but derived quantities. In addition, some features may be discarded in the process
of feature selection. If feature selection is based on the target values there will be a tendency to
over-fit, and then feature selection must be embedded in the validation framework (see below).
It is essential that the analysis pipeline is described in sufficient detail to capture the definition of
each element of the feature, any feature selection that precedes model-training, and any feature
transformations (including possible standardization).

The predictive model is the type of method used to map features to targets. Typical examples
include linear discriminant analysis and support vector machines. The model is distinct from the
algorithm or training procedure used to optimize the parameters of the method (i.e. usually to
minimize prediction error on held-out data). Be sure to clearly identify the model used and (if
used) the specific machine learning library used.

Finally, the training and validation method is perhaps the most important facet of a predictive
analysis. This comprises the algorithm used to build the predictive model and the framework
used to evaluate the model. Training may be nothing more than fitting a regression model, but
more typically consists of a complex algorithm that depends on the tuning of hyper-parameters.
In the validation step the model’s predictive performance (e.g. accuracy) is assessed using an
independent dataset or a cross-validation framework (e.g. leave-one-out, k-fold cross-validation,
stratified cross validation). Clearly specify the algorithm used, what objective function was
optimized, how the algorithm’s convergence was established (for iterative methods), and any
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post-processing of the fitted model. Be sure to clearly describe how hyper-parameters were
estimated, including the choice of the hyper-parameter grid, figure-of-merit optimized, the type
of validation scheme used, and the use of an averaging strategy to produce a final classifier. In
particular, identify which hyper-tuning parameters were optimized outside vs. inside a
cross-validation loop: The reported accuracy is evidently valid only if all estimated
hyper-parameters are optimized inside the loop as part of a nested cross-validation procedure
with three-way splits providing disjoint training, testing and validation datasets, and no
information from the test data enters the optimization of any of the parameters.

6. Results Reporting

6.1. Scope

The reporting of statistical results is inextricably tied to the statistical modeling and inference
procedures of the previous section. However, a scientific investigation invariably requires
dozens of analyses, inferences and views of the data, and thus any published report typically
contains a subset of all output of every statistical procedure completed. Thus we feel that results
reporting deserves its own section here, providing guidance on how authors should select and
present the outcomes of the modeling process.

6.2. General Principles

Transparency of published research requires that the reader can easily interpret the results
shown and, crucially, what results were considered but then not shown. Unreported selective
inference (a type of file drawer effect) inflates the significance of results shown and will stymie
efforts to replicate a finding.

6.3. Mass Univariate Modelling

For reporting single univariate outcomes, like average BOLD response in an ROI or global
mean FA, there is a wealth of best practice guidelines available® [Altman2008]. For mass
univariate models, there are four general classes of information that need to be carefully
described: Effects tested, tables of brain coordinates, thresholded maps, parcellated maps, and
extracted data.

A complete itemization of the effects tested must be presented, identifying the subset that are
presented. This is necessary to understand the true magnitude of the muiltiplicity involved and
the potential danger of selection biases. For example, if a study has a multifaceted design

9 http://www.equator-network.org.
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allowing various main and interaction effects to be considered, effects tested and omitted should
be enumerated, including references to previously published results on the current dataset. A
full sense of how extensively the data has been explored is needed for the reader to understand
the strength of the results.

Tables of coordinates historically have often been the only quantification of the results, and now
should be complemented with sharing of full statistic images (see, e.g., NeuroVault'). If
coordinates are reported, each table or sub-portion of a table should be clearly labeled as to
what contrast / effect it refers to (nature of the contrast, individual versus group result, group
size), and should have columns for: Anatomical region, X-Y-Z coordinate, T/Z/F statistic, and the
P-value on which inference is based (e.g. voxel-wise FWE corrected P; or cluster-wise FDR
corrected P); if cluster-wise inference is used, the cluster statistic (e.g. size, mass, etc) should
be included. Avoid having multiple columns of results, e.g. multiple XYZ columns, one for
increases, one for decreases, or one for left hemisphere, one for right hemisphere.

The table caption should clearly state (even if in repetition of the body text) the significance
criterion used to obtain these coordinates, and whether they represent a subset of all such
significant results (e.g. all findings from whole-brain significance, or just those in a selected
anatomical region). If T or F statistics are listed, supply the degrees of freedom. Whenever
possible, provide effects sizes at the selected coordinates together with 95% confidence
intervals. Finally, the space (i.e., Talairach, MNI, fsaverage) of the coordinate system should be
noted.

The thresholded map figures perhaps garner the most attention by readers and should be
carefully described. In the figure caption clearly state the type of inference and the correction
method (e.g. “56% FWE cluster size inference with P=0.001 cluster-forming threshold”), and the
form of any sub-volume corrections applied. For small volume or surface ROI corrections,
specify whether or not the ROI was identified prior to any data analysis and how it was defined.
Always annotate threshold maps with a color bar for the statistic values; when showing multiple
maps, use a common color bar when feasible; and always indicate right and left. Avoid common
fallacies in interpreting maps; e.g. an activation in region A but not region B doesn’t mean A is
significantly more active than B [Poldrack2008], and lack of activation is not evidence of no
activation. Most important, publicly share the original statistic images, unthresholded and
thresholded, so readers can explore the maps themselves in 3D (see Data Sharing below).

Extracted data from images aids the interpretation of the complex imaging results, and is
presented as effect magnitudes, bar plots, scatter plots or activation time courses. Computed
from a single voxel/vertex, or an average or principal component of a set of voxels/vertices, they
however present a great risk for “circularity” [Vul2009; Kriegeskorte2009]. Specifically, when the
voxels summarized are selected on the basis of a statistic map, they are biased estimates of the
effect that map describes. Thus it is essential that every extracted summary clearly address the

10 http://neurovault.org.
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circularity problem; e.g. “derived from independently-formed ROI”, or “values based on voxels in
a significant cluster and are susceptible to selection bias”. When working with single regions
and uncorrected P-values, consider the current discussions on the limitations of P-values
[Wasserstein2016] and in particular how P=0.05 can amount to very weak evidence of an effect
[Nuzzo2014].

6.4. Functional Connectivity

The critical issues when reporting functional connectivity differ between types of approaches, for
example exploratory multivariate vs. seed-based correlation methods, which provide whole
maps, versus confirmatory multivariate methods for a handful of regions.

When reporting multivariate decomposition methods like ICA or PCA, state how the number of
components were selected. With either ICA or seed-based analyses, when conducting inference
on multiple networks, be sure to account for multiplicity when searching over the networks. For
example, if testing for patient vs. control differences in the default mode, attentional, visual and
motor networks, the inference must account for not only the voxels within networks, but
additionally for searching the four IC maps for significance.

6.5. Multivariate Modelling & Predictive Analysis

While it may appear that predictive analyses are ftrivial to report (“Accuracy was X%, p(X>
chance)<0.001”), there are in fact two broad types of information to convey: Evaluation &
interpretation.

Evaluation refers to the assessment of a fitted classifier on out-of-sample data. As shown in the
tabular listing, there are several measures of classifier performance that should be reported
aside from overall accuracy (percentage of correct predictions). For example, when group sizes
are unequal, be sure to also report average or balanced accuracy (accuracy per group,
averaged).

Do not make claims of “above chance accuracy” unless based on confidence intervals or some
appropriate formal test, ideally a permutation test [Combrisson2015]. For regression report
prediction R?, though be aware this may be negative when the explained variance is low (but is
not necessarily truly zero). Avoid using a correlation coefficient as an evaluation metric
(computed between actual and held-out-predicted continuous values) as this is susceptible to
bias [Hastie2011, Ch7].

Interpretation of the fitted classifier allows potential insights to brain function or structure that

drives prediction, though must be done with care (see e.g. [Haufe2014]). In particular, be sure
not to over-interpret whole brain weight maps as localizing the source of decoding information,

OHBM COBIDAS Report 18 v1.0, 2016/5/19



as the very multivariate nature of the method means it is impossible to isolate a single region as
being responsible for classification. Voxels or vertices containing significant information may
receive small or zero weight if a regularisation penalty is used in fitting. Conversely,
voxels/vertices with high absolute weight may contain little predictive signal, but may mostly
serve to cancel correlated noise, thus improving classifier performance. The same caveats
apply in the context of an encoding model that predicts brain responses from various
experimental features; e.g. a predictor with large weight may be cancelling effects of other
predictors and may not by itself contain any information about the voxel in question. Solutions to
this problem include adding relevant (e.g. smoothness, continuity) priors to the multivariate
model to improve its interpretability, and using resampling techniques like stability selection to
enhance the reliability of the estimated classifier weights [Varoquaux2012]. Mapping procedures
that conduct the same analysis at every location, such as multivariate searchlight mapping, can
also outline regions that are predictive in isolation of activity elsewhere and thus complement
whole-brain classification methods.

Finally, just as mass univariate analyses can be weakened by ‘data dredging’ through scores of
contrasts, a predictive analysis is also less meaningful if it is the (say) 10th analytical approach
tried on a single dataset. It is essential to itemize the analyses attempted, both to convey what
doesn’t work and the size of the model space considered.

7. Data Sharing

While previous sections have largely described good practice that is (more or less) prevalent in
the community, this and the next section concerns practices that are currently scarce. Thus
these sections are necessarily more prescriptive, providing explicit suggestions on ways to
change how we conduct studies, meeting the challenges of making neuroimaging science as
transparent and reproducible as possible.

7.1. Scope

Neuroimaging, relative to other disciplines like genetics and bioinformatics, has lagged behind in
widespread acceptance of data sharing. This section outlines the practicalities of sharing of data
and results, including issues related to the use of software infrastructure, data repositories and
the details surrounding retrieval of data.

7.2. General Principles

Data sharing is one of the cornerstones of verifiable and efficient research, permitting others to
reproduce the results of a study and maximizing the value of research funds already spent.
However, to fully realize this value, data should not just be “available on request”, but shared in
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a data repository that is well organized, properly documented, easily searchable and sufficiently
resourced as to have good prospects for longevity. In this respect, we support the FAIR data
guiding principles according to whom data should be Findable, Accessible, Interoperable and
Re-usable'. To fulfill these goals, there are four key elements to a successful data sharing
effort: planning, databases, documentation, & ethics.

7.3. Planning for Sharing

Data sharing is most onerous when done as an afterthought [Halchenko2015]. Instead, if data
sharing is considered when a study is planned and initiated as part of a complete data
management plan, the additional effort required will be minimal. A data sharing plan should
establish a viable path for any qualified researcher to gain access to the data. Planning efforts
should begin with ethics (consent forms) and funding agencies, by creating realistic funding
roadmaps for long-term stewardship of data. Having realistic workflows and a proper technical
infrastructure are important prospective steps. In addition, there are a number of considerations
and hurdles for publishers, each of which have their own policies for data sharing.

A key to an effective data sharing is the use of a strict naming structure for files and directories.
This regularity brings a number of benefits, including greater ease in finding errors and
anomalies. But most valuable, organized data facilitates extensive use of scripting and
automation, reducing time needed for analysis and quality control (QC). Best practice is to use a
standardized data structure; for example, the recently developed BIDS standard " provides a
detailed directory hierarchy for images and a system of plain text files for key information about
a study’s data. This structure is used by OpenfMRI" making it easy to upload data to that
repository. Whatever the system, arranging your data in a regular structure will simplify all
efforts to manipulate and—specifically—share your data.

Another essential decision to make early in a study is exactly what kinds of data are to be
shared. The exact data shared must be consistent with the ethics of the study (see below,
Ethics). But once suitably anonymised, there are still the various versions of image data to
choose from: DICOM files from the scanner for each subject; “raw” converted data (e.g. NIFTI),
free of any preprocessing; ready-to-model fMRI data for each subject, having all of the basic
processing completed; per-subject summary maps, e.g. one effect/contrast image per subject in
fMRI; per-study statistic maps. Sharing raw data gives more options to other users (DICOM
being the rawest), while sharing preprocessed images makes it easier for others to immediately
start analyzing your data. Sharing of extensively processed data, such as (unthresholded)
statistical maps and underlying structural data (e.g., volumes and cortical surfaces of individuals
and/or group averages) can be very valuable, enabling readers of an article to access much
more information than can be conveyed in a static image in a publication. Finally, share as

" https://www.force11.org/node/6062.
12 hitp://bids.neuroimaging.io.
'3 http://openfmri.org.
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many QC measures as possible as well as providing a PASS/FAIL summary for each dataset,
allowing easy selection of usable data while allowing users to revisit QC decisions.

Decide at the outset with whom the data is to be shared and at what stage, as it may be useful
to share data with collaborators prior to publication, then more freely after publication. We
support the widest sharing of data possible, but in certain (e.g. clinical) circumstances this may
not be possible without additional protective measures, such as an explicit Data Use Agreement
(DUA), or the use of “data on request” services (e.g. Clinical Study Data Request') that enable
assessment of compliance with such terms. Again consistent with ethics, have a data
management plan that clearly specifies whether data can be freely distributed, or under exactly
what constraints it can be shared. For example, in large-scale databases, data may be freely
shared within a project, with some limits to other related projects, or with yet more constraints to
the general public. Establishing these limits before a single subject is scanned will save many
headaches down the road. Instead of setting the exact rules for data use yourself, consider
using an established license, like from the Creative Commons' or Open Data Commons'®,
saving yourself time and making the terms of use clear to users.

For large-scale, multi-site studies, the greater effort put into harmonization of experimental
paradigms, data acquisition, analysis and modeling, the easier it will be to amalgamate the data
later. If separate databases are used, then an ontological standardization is important,
establishing how to map data fields and the data dictionaries between sites.

Another facet to consider is the sharing of data analysis pipelines scripts and any provenance
traces. These are generally free of ethical concerns (unless protected information like subject
names creeps into a script!) and there is great value in allowing others to recreate your results
and apply your methods to new data. This is discussed in greater detail below (see
Documentation).

Finally, whenever possible use publication as the milestone for sharing. The longer you wait the
harder it becomes to assemble all the pieces (data, scripts, etc), plus the article can then have
the DOI/URL reference to the data.

In short, a comprehensive data management plan—that involves all authors, collaborators,
funding agencies, and publishing entities—is essential no matter what is shared and should be
considered from the outset of a study. Without such planning, in a jumble of folders and after a
graduate student or post-doc has moved on, data can effectively be lost.

14 http://clinicalstudydatarequest.com.
15 http://creativecommons.org/licenses.
16 http://opendatacommons.org/licenses.
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7.4. Databases

While a highly organized arrangement of data in a folder hierarchy is prerequisite for good data
management, it does not in itself constitute a database. A database, in addition to organizing
data, is searchable and provides access controls. Databases for imaging data may include
non-imaging data and allow direct entry of data. There are a number of imaging-oriented
databases, ranging in scale, complexity, features and, crucially, effort needed to install and
maintain them. As individual users are unlikely (and not advised!) to create imaging databases,
we review the considerations when choosing a database.

Consider access control options, and exactly who and which types of users should be allowed
to enter data, and access the data. There may be some types of data (e.g. sensitive behavioral
tests or essential personal information) that require special, restricted access. The ability to
modify existing data should be highly restricted, ideally with a form of audit control that records
the nature of the changes. A public repository must of course provide access for external users.

Comprehensive search functionality is important, especially for large scale, multi-project
databases. Useful features include being able to select subsets of data of interest, e.g. finding
subjects that have a certain age range, 1Q and a clinical diagnosis, with two different imaging
modalities. Once a selection is made, some systems may only let you download data, while
others may provide quick visualization or extensive analysis options. Especially when working
with large repositories, the availability of a scriptable query interface can be handy for complex
queries.

Consider the ability of a system to handle heterogeneous data. Most imaging databases will
accommodate the most basic demographic information, but may not accept more than one
modality (e.g. both MRI and EEG) or other types of essential data, like clinical evaluations or
batteries of psychological tests. Consider carefully all the data that comprises your studies and
whether it can all be stored in one unified system. Some systems allow staff to directly enter
subject information, and even conduct batteries of psychological tests on subjects, eliminating
double entry and reducing the risk of errors.

Finally, assess the complexity of installation and maintenance of a system. At a single site, the
system must be easy to install and maintain, while a database for a multi-site study will
necessarily be more complex and require adequate expertise to manage. As part of this, ensure
there is detailed documentation for maintainers, as well for end users on how to navigate the
resource. And if serving as a repository, a database must additionally possess a long-term
preservation plan.

Now, with a variety of mature imaging databases available, building a de novo home-grown

database cannot be recommended. For example, IDA [Mueller2005], XNAT [Marcus2007],
COINS [Scott2011], and LORIS [Das2012] are four established and well-resourced systems for
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longitudinal, multi-modal, web-based data storage and querying, with proper user control. Some
of these tools interface to high performance computing platforms for mass processing (e.g. IDA
to LONI [Dinov2009] or LORIS to CBRAIN [Das2016]) and can be an important element in
reproducibility (see Reproducibility section).

While these established databases are becoming easier to install and maintain, we
acknowledge that in low resource environments they may be impractical. In these settings, the
use of highly structured storage of imaging data (see BIDS above) and extensive use of
scripting is the best approach, and facilitates a transition later to a formal database. In most
research environments, however, informatics support should be regarded as a necessity and
funded accordingly, if for no other reason than to obtain the maximal value of the data collected,
now and for years to come.

7.5. Documentation

Even an organized and searchable database is of no use, unless users have access to
information describing what is actually stored in the repository. Clear documentation on the
studies within a repository, the data acquisition and experimental paradigm detail are all
examples of information that are needed to make use of information in a database. If processed
data and results are stored, details on the preprocessing and models fit are also essential. The
documentation should be written for a wide audience, including members from multiple
disciplines. The extensive documentation for the Human Connectome Project17 provides a great
example of how to describe data (unprocessed and minimally preprocessed) as well as the
acquisition and preprocessing methods in a large and complex database.

A form of self-documentation is provenance, i.e. recording exactly what happened to data
through preprocessing and modeling. These “provenance traces” can help track-down problems
and provide invaluable reference for others who want to replicate previous studies. While
provenance is not usually recorded, the AFNI BRIK and MINC" formats have forms of
provenance tracking, and the NIDM project20 is developing a framework to save this information
in a standard format. Pipeline software like LONI Pipeline21 or Nipype22 explicitly provide such
provenance records.

7 http://humanconnectome.org/documentation.
18 http://afni.nimh.nih.gov/afni/doc/faq/39.

19 http://www.bic.mni.mcgill.ca/software/minc.
20 hitp://nidm.nidash.org.

21 http://loni.usc.edu/Software/Pipeline.

22 http://nipy.ora/nipype.
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7.6. Ethics

There are ethical issues that promote and constrain data sharing. In favor of data sharing is the
gain in knowledge from re-used data that can improve health in patient populations, not to
mention how sharing can make better use of the public funds spent on research. But the data to
be shared pertains humans whose rights and wishes must be respected. Hence suitably crafted
ethics and consent documents are essential for data sharing. While in the United States
de-identified data is currently not “protected health information” and should be able to be
shared, regulations differ between countries and institutions and are subject to change. In the
United Kingdom, a separate set of data protection laws exist and must be complied with. Thus
be sure to consult your ethics or institutional review board, and any data protection office, before
acquiring data with the intent of sharing, as well as before releasing data. The Open Brain
Consent project23 can also be of use, providing sample forms written specifically to account for
later sharing of data. Some level of anonymization will be required, ensuring all sensitive
personal information is withheld or suitably coarsened or obscured (e.g. reporting only age in
years at scan time instead of birth date), and/or applying a “de-facing” procedure to anatomical
MRI images. Careful ‘scrubbing’ (e.g. removing subject names from DICOM files, or analysis
pathnames) is required to ensure no personal information is discussed.

8. Reproducibility

We make the distinction articulated by [Peng2011] and others that reproducible results can be
recreated by others using the same data and software as shared by the original authors, while a
replication is the traditional scientific goal of independent researchers using independent data
and possibly distinct methods to arrive at the same scientific conclusion (see Appendix B). While
some have argued that reproducibility is secondary, and that “one should replicate the result not
the experiment” [Drummond2009], recent failures to replicate high-impact results and
occasional but acutely concerning examples of outright fraud have made the case for the
importance of reproducibility.

8.1. Scope

We focus on analysis-level reproducibility, i.e. the ability to recreate the results of a well-defined
analysis using the same data. All of the recommendations of this paper are in the service of the
clear, unambiguous reporting of design, data and analysis workflow as recommended by the
FAIR principles®* [Wilkinson2016], EQUATOR Network® [Altman2008], Reward Alliance®® and

2 http://open-brain-consent.readthedocs.org.
% hitps://www.force11.org/node/6062.

25 hitp://www.equator-network.org.

% http://researchwaste.net.
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ARRIVE guidelines? [Kilkenny2010]. To further make your analysis as reproducible as possible,
ensure it is documented, archived and citable.

8.2. Documentation

As even the operation system version can influence the exact results obtained [Glatard2015], be
sure to cite the computational infrastructure as well as versions of software used.

When the analysis involves multiple tools, some formal description of the workflow connecting
these tools should be provided. Tools such as BrainVISA [Cointepas2001], LONI pipeline
[Rex2003], NiPype [Gorgolewski2011], PSOM [Bellec2012], Automatic Analysis Pipeline
[Cusack2015], SPM batch [Penny2006] and CBRAIN [Das2015] may help structure and
describe workflows. myExperiment [DeRoure2010] can be used to share and run workflows
online (see for instance this FSL fMRI workflow from the LONI Pipeline environmentzg).

Any additional information on provenance will aid in efforts to reproduce your analysis. For
example, tools Ilike NiPype & the LONI Pipeline Processing environment
[MacKenzie-Graham2008] records an exact “provenance trace” of the analysis, and the MINC®
and AFNI BRIK formats also store histories of analysis commands used to create a file. The
Neuroimaging Data Model (NIDM [Keator2013]) is being actively developed to describe all steps
of a data analysis in analysis-program-independent fashion.

Even when the data and workflow used in an analysis are properly documented, it may not be
easy to reproduce the exact same data, for instance figures, as presented in a publication.
Consider the use of literate programming tools such as iPython notebooks (used for instance in
[Waskom2014]), or R-based Sweave [Leisch2002]. Another example involves ‘scene’ files that
store all of the information (including links to the associated data files) that is needed to exactly
reproduce a published figure. Currently, scene files are supported by the Connectome
Workbench [Marcus2013] and Caret [VanEssen2001] software platforms.

8.3. Archiving

The analysis documentation should be archived in a long-term accessible location on the web.
Of course, even with excellent documentation resources may disappear, become inaccessible,
or change, further challenging reproducibility.

Open-source software is more likely to be available long term and is thus recommended.
Whenever available, report on the availability of tools in repositories such as the INCF software

27 https://www.nc3rs.org.uk/arrive-quidelines.
28 http://www.myexperiment.org/workflows/2048.
29 http://en.wikibooks.org/wiki/MINC/Reference/MINC2.0 Users_Guide.
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http://en.wikibooks.org/wiki/MINC/Reference/MINC2.0_Users_Guide

centerso, the NITRC Resource Registry31, or in software suites such as NeuroDebian
[Halchenko2012] or LindNeuro [Nemoto2011].

A good way to facilitate reproducibility is to create and release a virtual machine (VM) or a
container with the software and pipelines used in the analysis. A good starting point is the
NeuroDebian VM* that can be further customized for a particular use case. Examples of other
practical solutions that demonstrate this approach are the Nipype vagrant box and the NITRC
Computational Environment™ (used e.g. in [Ziegler2014]), both NeuroDebian-based VMs, and
Niak™" (available on DockerHubSS). Of course licensing may prevent creating comprehensive
VM. With Matlab code, consider using the Matlab Compiler to create standalone applications or
free alternatives such as GNU Octave.

8.4. Citation

URLs tend to “decay” over time [Habibzadeh2013], making them inappropriate to cite online
material permanently. Instead, Digital Object Identifiers (DOIs) provide a persistent way to index
digital data. Various platforms are now available to host your data and workflows and create
DOls for them, such as Zenodo36, figshare37or the Harvard Dataverse system (see examples in
[Tustison2014], [Soelter2014] & [Holmes2015]). Data hosting projects may also register DOls
directly to organizations such as DataCite” or CrossRef® .

9. Conclusions

In this work we have attempted to create an extensive (but not comprehensive) overview of
reporting practices and, to a lesser extent, the practices themselves needed to maximize the
openness and replicability of neuroimaging research. We have focused exclusively on MRI, but
many of the suggestions and guidelines will easily translate to other areas of neuroimaging and
related fields.

30 hitp://software.incf.org.

31 http://www.nitrc.org.

32 hitp://neuro.debian.net or https://hub.docker.com/_/neurodebian.
33 http://www.nitrc.ora/plugins/mwiki/index.php/nitrc:User_Guide - NITRC_Computational Environment.
34 hitp://simexp.github.io/niak.

35 http://hub.docker.com.

36 http://zenodo.org.

37 http://figshare.com.

38 http://dataverse.harvard.edu.

% http://www.datacite.org.

40 http://www.crossref.org.
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This document is inevitably dated by the current technology and means of reporting scientific
results. As these evolve this document will need to be updated and revised. Updates and the
current version of these guidelines will be available at the COBIDAS website*".

A reaction to the extensive checklists (Appendix D) could be “What human can put all that into
their paper!?”, and our response is that ideally no human should, that is it should be a
computer’s job. Many of the elements to report exist in some machine readable form, but in
countless different forms. Thus the next important work to be done is to align these checklists to
a controlled vocabulary, e.g. from NIH’'s Common Data Elements*?. Once terms are set like this,
they are more easily entered into a format like ISA-Tab*, a table-based system for recording
machine-readable metadata (now used, e.g., by the journal Scientific Data), and the stage is
then set to develop the tools to automatically extract and export such vital meta-data.
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Upon creating COBIDAS in June 2014, Dr. Nichols was named as chair and subsequently
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approved by Council. The different constituencies considered included: Researchers focusing in
cognitive applications, clinical applications, methods and database developers; different
geographic areas; sex; representation of junior researchers; and, to facilitate communication
within OHBM leadership, at least one member from Council and one member from the OHBM
Program Committee.
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Appendix B. Defining Reproducibility

A number of terms with overlapping meaning are used to refer to the merits of scientific findings,
including reproducibility, replicability, and reliability. Here we attempt to set the terminology and
clarify their meaning as used this report.

Replication is a cornerstone of the scientific method. A replication, where independent
researchers use independent data and possibly distinct methods to arrive at the same original
conclusion, is the ultimate standard for validating a scientific claim.

Roger Peng [Peng2011] suggested a specific notion of reproducibility in the computational
sciences. He articulated a kind of reproducibility where independent researchers use the exact
same data and code to arrive at the original result. Within this there is a spectrum of
reproducibility practice, ranging from a publication sharing only code, or code and data, to the
best case, where detailed scripts and code and data are shared that produces the results
reported in the paper when executed.

The US Food & Drug Administration also has definitions to describe the precision of
measurements, as codified by terms from the International Standards Organization (ISO),
“repeatability” and “reproducibility” [ISO2006].

ISO repeatability (1ISO 3534-2:2006 3.3.5) is defined as precision under “conditions where
independent test/measurement results are obtained with the same method on identical
test/measurement items in the same test or measuring facility by the same operator using the
same equipment within short intervals of time”.

ISO reproducibility (ISO 3534-2:2006 3.3.10) is defined as precision under “conditions where
independent test/measurement results are obtained with the same method on identical
test/measurement items in different test or measurement facilities with different operators using
different equipment”

While these definitions are motivated by laboratory use, in a setting where the “test item” is
more likely to be a Petri dish culture than a human subject, they still offer a useful sharp
definition. In the neuroimaging setting, we find these terms too narrow and unable to capture the
range of types of consistency that can be considered. Specifically, not just consistency of the
imaging device, or consistency of analysis process, we can consider an expansive concept of
consistency, a generalizability of results over different classes of experimental stimuli and
context.

In Table A1 we present an incomplete taxonomy of different possible types of consistency, from
the ISO repeatability to the widest senses of scientific generalizability. While this taxonomy is
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useful to see the multifarious nature of “reproducibility”, in the body of this work we use
“reproducibility” (without qualification) to mean Roger Peng’s “computational” notion.

OHBM COBIDAS Report 38 v1.0, 2016/5/19



Table B1. Levels of Reproducibility

This table provides an incomplete taxonomy of types of consistency of neuroimaging results. For each type of consistency (row), the variable (column) that is held
constant (¢, bullet) or allowed to vary (D=different) is indicated. In each instance, a bullet (*) indicates the exact same setting; for the variable "Subject" this means the
very same acquired data is used, while a double bullet (*) indicates the same subjects are scanned multiple times. Examples of different Experimental Methods
include fundamental changes like an event-related design vs. a block design; examples of different Experimental Code/Stimuli, include different sets of pictures used
in a visual working memory experiment, or using different paradigm software; an example of different Stimuli Type would be number vs. shape vs. image stimuli in a
working memory experiment. An example of different analysis methods for intrasubject (first level) fMRI data would be a confirmatory regression-based modelling vs.
an exploratory data-driven method like independent components analysis; examples of different analysis code would be intrasubject fMRI fit with a regression model in
two different software packages.

Type of Stability Investlgator Experlmental Stimuli Experlmental Subject Subjects Scanner Acqulstlon Data Analysis Analysis
: i Method Type Code/Stlmull Population : Day Analyst Method Code

Measurement Stability

ISO Repeatability : N N o o .o N N o N N
.9__g____39__m_'_r_19.t_€__'n_t__r_a__s__c_a_r_!n_e_r__r_ﬁ!!_a__b!!!_t_y. ______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
ISO Intermediate Reproducibility R N R o o .o o D o o R
8.8 7-day intra-scanner reliability i e
ISO Reproducibility

- o . . . . . oo D D . . .
e.g. 7-day inter-scanner reliability
Analytical Stability
Analysis Replicability i e ! b e S R e -
Collegial Analysis Replicability i e ! b e S e o] Do e -
Peng's Reproducibility i D i o ° . i . e . o i D . .

Generalisabilty over ...
Subjects (Near Replicability)

Experimental & Analytical methods D D o D . D D D D D D
(Far Replicability) ' ' ’ ; ’

Subject & Stimulus Populations D D D D D D D D D D D

(Hypothesis Generalisability)
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Appendix C. Short descriptions of fMRI models

While any analysis software consists of myriad modelling decisions, an author must be able to
describe the key facets of an analysis in the methods section of their paper. To facilitate this,
and to suggest a level of detail that is useful to readers unfamiliar with the software yet not
distractingly long, we provide short descriptions for the most commonly used statistical models
in widely used software packages.

C1. Task fMRI

Summaries for AFNI*  Freesurfer®, FSL*, & SPM* are based on versions
AFNI_2011_12_21_1014, FreeSurfer 5.3, FSL 5.0.8 and SPM 12 revision 6470, respectively.

AFNI 1° level — 3dDeconvolve: Linear regression at each voxel, using ordinary least squares,
drift fit with polynomial.

AFNI 1* level — 3dREMLfit: Linear regression at each voxel, using generalised least squares
with a voxel-wise ARMA(1,1) autocorrelation model, drift fit with polynomial.

AFNI 2" level — 3dTtest: Linear regression at each voxel, using ordinary least squares.

AFNI 2™ level — 3dMEMA: Linear mixed effects regression at each voxel, using generalized
least squares with a local estimate of random effects variance.

AFNI 2™ |evel — 3dMVM: Multivariate ANOVA or ANCOVA at each voxel.

AFNI 2" level — 3dLME: General linear mixed-effects modeling at each voxel, with separate
specification of fixed and random variables.

Freesurfer 1st Level — selxavg3-sess: Linear regression at each surface element, using
generalized least squares with a element-wise AR(1) autocorrelation model, drift fit with
polynomial.

Freesurfer 2st Level — mri_glmfit: Linear regression at each surface element, using ordinary
least squares.

FSL 1% level: Linear regression at each voxel, using generalized least squares with a
voxel-wise, temporally and spatially regularized autocorrelation model, drift fit with
Gaussian-weighted running line smoother (100s FWHM).

FSL 2™ level — “OLS”: Linear regression at each voxel, using ordinary least squares.

FSL 2" level — “FLAME1”: Linear mixed effects regression at each voxel, using generalized
least squares with a local estimate of random effects variance.

SPM 1% level: Linear regression at each voxel, using generalized least squares with a global
approximate AR(1) autocorrelation model, drift fit with Discrete Cosine Transform basis (128s
cut-off).

4 http://afni.nimh.nih.gov.

4 hitps://surfer.nmr.mgh.harvard.edu.
46 http://fsl.fmrib.ox.ac.uk.

47 http://www_fil.ion.ucl.ac.uk/spm.
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SPM 2™ level — no repeated measures: Linear regression at each voxel, using ordinary least
squares.

SPM 2™ level — repeated measures: Linear regression at each voxel, using generalized least
squares with a global repeated measures correlation model.

C2. Single-Modality ICA

Methods for ICA analyses are not as consolidated as mass univariate linear modelling, but we
provide short summaries of some typical analyses in GIFT*®* and MELODIC*® (alphabetical
order), based on versions GIFTv3.0a and FSL 5.0.8, respectively. [Optional aspects, depending
on particular variants used, indicated in brackets.]

GIFT, single-subject fMRI with ICASSO stability: Spatial ICA estimated with infomax where
scaling of original data, spatial components and time courses constrained to unit norm, resulting
best-run selected from 10 runs; post-ICA Z statistics produced for maps, between temporal
component correlation (Functional Network Correlation), time courses, spectra, tested within a
GLM framework.

GIFT, multi-subject PCA-based back-reconstruction with ICASSO stability: Single-subject
PCA followed by temporal concatenation, group-level PCA and then spatial ICA with infomax;
calculation of single subject maps using PCA-based back-reconstruction, resulting best-run
selected from 10 runs; post-ICA Z statistics produced for maps, time courses, spectra, and
between temporal component correlation (Functional Network Correlation) tested within a GLM
framework. [Time-varying states computed using moving window between temporal
components (Dynamic Functional Network Correlation).]

GIFT, spatio-temporal (dual) regression of new data: Using provided component maps
calculates per-subject components from new data using regression-based back-reconstruction;
produces component maps, time courses and spectra and between temporal component
correlation (Functional Network Correlation) tested within a GLM framework.

GIFT, spatial ICA with reference: Spatial ICA using one or more provided seed or component
maps. Components found by joint maximization of non-Gaussianity and similarity to spatial
maps resulting in subject specific component maps and timecourses for each subject, scaled to
Z-scores, following by testing voxelwise (within network connectivity), between temporal
component correlation (Functional Network Correlation), spectra, tested within a GLM
framework.

GIFT, source based morphometry of gray matter maps: Spatial ICA of multi-subject gray
matter segmentation maps (from SPM, FSL, etc) resulting in spatial components and
subject-loading parameters tested within a GLM framework.

MELODIC, single-subject ICA: Spatial ICA estimated by maximising non-Gaussian sources,
using robust voxel-wise variance-normalisation of data, automatic model-order selection and
Gaussian/Gamma mixture-model based inference on component maps.

48 http://mialab.mrn.org/software/qift.
49 http://fsl.fmrib.ox.ac.uk/fsl/fslwiki’MELODIC.
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MELODIC, group level (concat ICA): Temporally concatenation of fMRI data, followed by
spatial ICA estimated by maximising non-Gaussian sources, using using robust voxel-wise
variance-normalisation of data, automatic model order selection and Gaussian/Gamma
mixture-model based inference on component maps

MELODIC, group-level (tensor-ICA): Higher-dimensional decomposition of all fMRI data sets
into spatial, temporal and subject modes; automatic model order selection and
Gaussian/Gamma mixture-model based inference on component maps

MELODIC dual regression: Estimation of subject-specific temporal and spatial modes from
group-level ICA maps or template maps using spatial followed by temporal regression.

C3. Multi-Modalitiy ICA

Available multi-modality ICA methods include FIT*® and FSL-FLICA®' (alphabetical order), based
on versions FITv2.0c and flica_2013-01-15, respectively.

FIT, joint ICA, two-group, fMRI + EEG fusion: Joint spatial ICA of GLM contrast maps and
temporal ICA of single or multi-electrode event-related potential time course data (can be
non-concurrent) with infomax ICA; produces joint component maps (each with an fMRI
component map and ERP component timecourse(s)) and subject loading parameters which are
then tested for group differences with a GLM framework.

FIT, N-way fusion using multiset CCA+joint ICA: Multiset canonical correlation analysis
applied to several spatial maps to extract components, then submitted to spatial ICA with
infomax ICA; produces multi-modal component maps and subject-specific loading parameters
which are tested within a GLM framework.

FIT, parallel ICA, fusion of gray matter maps and genetic polymorphism array data: Joint
spatial ICA of gray matter segmentation maps and genetic ICA of single nucleotide
polymorphism data performed through a maximization of independence among gray matter
components, genetic components, and subject-wise correlation among one or more gray matter
and genetic components. Produces linked and unlinked gray matter and genetic components
and subject loading parameters which are then tested within a GLM framework.

FSL-FLICA multi-subject/multi-modality (Linked-ICA): ICA-based estimation of common
components across multiple image modalities, linked through a shared subject-courses.

50 http://mialab.mrn.org/software/fit.
51 http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLICA.
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Appendix D. Itemized lists of best practices and reporting items

This section contains checklists for practices and items to report. Each item has been included
because it is an essential piece of information needed to understand, evaluate and reproduce
an experiment. Authors should strive to include all these items, but items marked as

“Mandatory” are particularly crucial, and a published work cannot be considered complete
without such information.

The rest of this page intentionally left blank.
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Table D.1. Experimental Design Reporting

Aspect Notes Mandatory
Number of subjects Elaborate each by group if have more than one group.
Subjects approached N
Subjects consented N
Subijects refused to participate Provide reasons. N
Subjects excluded Subijects excluded after consenting but before data acquisition; provide reasons. N
Subijects participated and Provide the number of subjects scanned, number excluded after acquisition, and Y
analyzed the number included in the data analysis. If they differ, note the number of

subjects in each particular analysis.
Inclusion criteria and Elaborate each by group if have more than one group.
descriptive statistics
Age Mean, standard deviation and range. Y
Sex Absolute counts or relative frequencies. Y
Race & ethnicity Per guidelines of NIH or other relevant agency. N
Education, SES Education is essential for studies comparing patient and control groups; complete | Y

SES reporting less important for single-group studies, but still useful.

Specify measurement instrument used; may be parental SES and education if

study has minors.
1Q Specify measurement instrument used. N
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Handedness

Absolute or relative frequencies; basis of handedness-attribution (self-report, EHI,
other tests). (Important for fMRI, may be less important for structural studies.)

Exclusion criteria

Describe any screening criteria, including those applied to “normal” sample such
as MRI exclusion criteria.

Clinical criteria

Detail the area of recruitment (in- vs. outpatient setting, community hospital vs.
tertiary referral center etc.) as well as whether patients were currently in treatment.

Clinical instruments

Describe the instruments used to obtain the diagnosis and provide tests of intra- or
inter-rater reliability. Clarify whether a “clinical diagnosis” or “inventory diagnosis”
was used (if applicable). State the diagnostic system (ICD, DSM etc) that was
used.

Matching strategy

If applicable.

Population & recruitment
strategy

Population from which subjects were drawn, and how and where recruitment took
place, e.g., schools, clinics, etc. If possible, note if subjects are research-naive or
have participated in other studies before.

Subject scanning order

With multiple groups, information on ordering and or balance over time; especially
report relative to scanner changes/upgrades. (Ideally, use randomized or
interleaved order to avoid bias due to scanner changes/upgrades.)

Neurocognitive measures

All measures collected on subjects should be described and reported.

Ethical considerations

Ethical approval

Describe approval given, including the particular institutional review board,
medical ethics committee or equivalent that granted the approval. When data is
shared, describe the ethics/institutional approvals required from either the author
(source) or recipient.

Informed consent

Record whether subjects provided informed consent or, if applicable, informed
assent.
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Design specifications

Design type Task or resting state. Event-related or block design. (See body text for usage of Y
‘block design’ terminology.)

Condition & stimuli Clearly describe each condition and the stimuli used. Be sure to completely Y
describe baseline (e.g. blank white/black screen, presence of fixation cross, or any
other text), especially for resting-state studies. When possible provide images or
screen snapshots of the stimuli.

Number of blocks, trials or Specify per session, and if differing by subject, summary statistics (mean, range Y
experimental units and/or standard deviation) of such counts.
Timing and duration Length of each trial or block (both, if trials are blocked), and interval between trials. | Y

Provide the timing structure of the events in the task, whether a random/jittered
pattern or a regular arrangement; any jittering of block onsets.

Length of the experiment Describe the total length of the scanning session, as well as the duration of each Y
run. (Important to assess subject fatigue.)

Design optimization Whether design was optimized for efficiency, and how. Y

Presentation software Name software, version and operating system on which the stimulus presentation |Y
was run. When possible, provide code used to drive experiment.

Task specification

Condition Enumerate the conditions and fully describe and reference each. Consider usinga | Y
shorthand name, e.g. AUDSTIM, VISSTIM, to refer to each condition, to clarify the
distinction between a specific modeled effect and a psychological construct.
Naming should reflect the distinction between instruction periods and actual
stimuli, and between single parameters and contrasts of parameters.

Instructions Specify the instructions given to subjects for each condition (ideally the exacttext |Y
in supplement or appendix). For resting-state, be sure to indicate eyes-closed,
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eyes-open, any fixation. Describe if the subjects received any rewards during the
task, and state if there was a familiarization / training inside or outside the
scanner.

Stimuli Specifics of stimuli used in each run. For example, the unique number of stimuli Y
used, and whether/how stimuli were repeated over trials or conditions.

Randomization Describe block or event ordering as deterministic, or report manner of Y
randomization, in terms of order and timing. If pseudo-randomized, i.e. under
constraints, describe how and the criteria used to constrain the orders/timings.

Stimulus presentation & Specify the presentation hardware (e.g. back projection, in-room display, goggles, |Y

response collection. etc), and the response systems (e.g. button boxes, eye tracking, physiology).
Note how equipment was synched to the scanner (e.g. scanner TTL, or manual
sync.)

Run order Order in which tasks runs are conducted in the scanner. Y

Power analysis

Outcome Specify the type of outcome used as the basis of power computations, e.g. signal | Y
in a pre-specified ROI, or whole image voxelwise (or cluster-wise, peak-wise, etc.).

Power parameters Specify Y

e Effect size (or effect magnitude and standard deviation separately).

e Source of predicted effect size (previous literature with citation; pilot data
with description, etc).

e Significance level (e.g. uncorrected alpha 0.05 for an ROI, or
FWE-corrected significance

e Target power (typically 80%).

e Any other parameters set (e.g., for spatial methods a brain volume and
smoothness may be needed to be specified).

Behavioral performance
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Variables recorded

State number of type of variables recorded (e.g. correct button press, response
time).

Summary statistics Summaries of behavior sufficient to establish that subjects were performing the Y
task as expected. For example, correct response rates and/or response times,
summarized over subjects (e.g. mean, range and/or standard deviation).

Table D.2. Acquisition Reporting

Aspect Notes Mandatory

Subject preparation

Mock scanning Use of an MRI simulator to acclimate subjects to scanner environment. Report N
type of mock scanner and protocol (i.e. duration, types of simulated scans,
experiments).

Special accommodations For example, for pediatric scanning, presence of parent/guardian in the room. Y

Experimenter personnel Whether a single or multiple experimenters interacted with the subjects. N

MRI system description

Scanner Provide make, model & field strength in tesla (T). Y

Coil Receive coil (e.g. “a 12-channel phased array coil”, but more details for a custom Y
coil) and (if nonstandard) transmit coil. Additional information on the gradient
system, e.g. gradient strength (if non-standard for the make and model, or
switchable).

Significant hardware For example, special gradient inserts/sets. N

modifications
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Software version

Highly recommended when sharing vendor-specific protocols or exam cards, as
version may be needed to correctly interpret that information.

MRI acquisition

Pulse sequence type For example, gradient echo, spin echo, etc. Y

Imaging type For example, echo planar imaging (EPI), spiral, 3D. Y
Number of shots (if multi-shot); partial Fourier scheme & reconstruction method (if
used);

Essential sequence & imaging For all acquisitions: Y

parameters.

e Echo time (TE).
e Repetition time (TR).
o For multi-shot acquisitions, additionally the time per volume.
e Flip angle (FA).
e Acquisition time (duration of acquisition).
Functional MRI:
e Number of volumes.
e Sparse sampling delay (delay in TR) if used.
Inversion recovery sequences:
e Inversion time (TI).
BO field maps:
e Echo time difference (dTE).
Diffusion MRI:
e Number of directions.
o Direction optimization, if used and type.
b-values.
Number of b=0 images.
Number of averages (if any).
Single shell, multi-shell (specify equal or unequal spacing).
Single- or dual-spin-echo, gradient mode (serial or parallel).
e |[f cardiac gating used.
Imaging parameters:
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e Field of view.
e In-plane matrix size, slice thickness and interslice gap, for 2D acquisitions.
e Slice orientation:
o Axial, sagittal, coronal or oblique.
o Angulation: If acquistion not aligned with scanner axes, specify
angulation to AC-PC line (see Slice position procedure).
e 3D matrix size, for 3D acquisitions.

Phase encoding Specify phase encoding direction (e.g. as A/P, L/R, or S/I). Y
For 3D, specify “partition encode” (aka slice) direction.

Phase encoding reversal: Mention if used (aka “blip-up/blip-down”).

Parallel imaging method & Report: Y

parameters e Method, e.g. SENSE, GRAPPA or other parallel imaging method, and

acceleration factor.
e Matrix coil mode, and coil combining method (if non-standard).

Multiband parameters Multiband factor and field-of-view shift (only if applicable). Y

Readout parameters Receiver bandwidth, readout duration, echo spacing. N

Fat suppression For anatomical scans, whether it was used or not. Y

Shimming Any specialized shimming procedures. Y

Slice order & timing For fMRI acquisitions, interleaved vs. sequential ordering and direction Y
(ascending/descending), location of 1st slice; any specialized slice timing.

Slice position procedure For example, landmark guided vs. auto-alignment.

Brain coverage Report whether coverage was whole-brain, and whether cerebellum and Y
brainstem were included. If not whole-brain, note the nature of the partial area of
coverage. If axial and co-planar with AC-PC line, the volume coverage in terms of
Zin mm.
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Scanner-side preprocessing Including: Y

e Reconstruction matrix size differing from acquisition matrix size.

e Prospective-motion correction (including details of any optical tracking, and
how motion parameters are used).

e Signal inhomogeneity correction.

e Distortion-correction.

Scan duration In seconds N
Other non-standard procedures | Including: N
e Turning off the cold head(s) (e.g. during EEG/fMRI or spectroscopy
measurements).

e Reduce sound pressure by limiting the gradient slew rate.

T1 stabilization Number of initial “dummy” scans acquired and then discarded by the scanner. Y

Diffusion MRI gradient table Also referred to as the b-matrix (but not to be confused with the 3x3 matrix that N
describes diffusion weighting for a single diffusion weighted measurement).

Perfusion: Arterial Spin Labelling e ASL Labelling method (e.g. continuous ASL (CASL), pseudo-continuous Y
MRI ASL (PCASL), Pulsed ALS (PASL), velocity selective ASL (VSASL)).
e Use of background suppression pulses and their timing.
e For either PCASL or CASL report:
o Label Duration.
o Post-labeling delay (PLD).
o Location of the labeling plane.
e For PCASL also report:
Average labeling gradient.
Slice-selective labeling gradient.
Flip angle of B1 pulses.
Assessment of inversion efficiency; QC used to ensure
off-resonance artifacts not problematic, signal obtained over whole
brain.
e For CASL also report:

o

O O O
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o Use of a separate labeling coil.
o Control scan/pulse used.
o B1 amplitude.
e For PASL report
o TIL
o Labeling slab thickness.
o Use of QUIPSS pulses and their timing.
e For VSASL
o TIL
o Choice of velocity selection cutoff (“VENC”).

Perfusion: Dynamic
Susceptibility Contrast MRI

Specify:

e Number of baseline volumes.

e Type, name and manufacturer of intravenous bolus (e.g. gadobutrol,
Gadavist, Bayer).
Bolus amount and concentration (e.g. 0.1 ml/kg and 0.1 mmol/kg).
Injection rate (e.g. 5 ml/s).
Post-injection of saline (e.g. 20 ml).
Injection method (e.g. power injector).

Preliminary quality control

Motion monitoring

For functional or diffusion acquisitions, any visual or quantitative checks for severe
motion; likewise, for structural images, checks on motion or general image quality.

Incidental findings

Protocol for review of any incidental findings, and how they are handled in
particular with respect to possible exclusion of a subject’s data.
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Table D.3. Preprocessing Reporting

Aspect

Notes

Mandatory

Software

For each software used, be sure to include version and revision number.

Y

Software citation

Include URL and Research Resource Identifier for each software used.

N

T1 stabilization

Number of initial “dummy” scans discarded as part of preprocessing (if not already
performed by scanner).

Brain extraction

If performed, report:
e Name of software/method (e.g., BET, recon-all in FreeSurfer, etc).
e Parameter choices (e.g. BET’s fractional intensity threshold).
e Any manual editing applied to the brain masks.

Segmentation

For structural images, method used to extract gray, white, CSF and other tissue
classes.

Slice time correction

If performed, report:

Name of software/method.

Whether performed after or before motion correction.
Reference slice.

Interpolation type and order (e.g., 3" order spline or sinc).

Motion correction

Report:

e Name of software/method.

e Use of non-rigid registration, and if so the type of transformation.

e Use of motion susceptibility correction (fieldmap-based unwarping), as well
as the particular software/method.
Reference scan (e.g. 1% scan or middle scan).

e Image similarity metric (e.g. normalized correlation, mutual information,
etc).
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Interpolation type (e.g., spline, sinc), and whether image transformations
are combined to allow a single interpolation.

Use of any slice-to-volume registration methods, or integrated with slice
time correction.

Gradient distortion correction (If not already described as part of motion susceptibility correction.) Y
Diffusion MRI eddy current Report: Y
correction e Name of software/method, and if integrated with motion correction
e Image similarity / cost function.
e Type of transformation (e.g. rigid body, affine) and whether constrained
only along the phase encode direction.
Note if gradient table (b-matrix) is then re-oriented.
Volumetric change applied for eddy current along the phase-encode axis
(by the Jacobian determinant).
Diffusion estimation For all methods, report Y

Model, parameterisation and number of free parameters.

Estimation method.

Outlier handling approach.

Some evidence of fit quality; e.g sample of slices of diffusion weighted
data, or residual maps.

Items to note for particular approaches:

Tensor or Kurtosis.
o Any parameter constraints, like cylindrical symmetry.
Multi-compartmental models.
o Compartments of the model.
Orientation distribution function.
o Parametric (model) or nonparametric (basis function) model.
o Whether orientation distribution function or fibre orientation density
is reported.
o For spherical deconvolution, note how the canonical fibre response
function is derived (e.g. from the data themselves, or simulated
data).
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Diffusion processing Report: N
e Summary measures computed (FA, MD, AD, RD, MK, AK, RK, etc.).
Whether a track based or voxel-wise method is used.

Threshold used to define analysis voxels.

Use of population reference track atlas vs. custom atlas (specify set of
subjects used to create atlas).

e Standard deviation map (across subjects).

Diffusion tractography Report: Y

e Name of software/method.

e Step size, turning angle and stopping criteria.

e For ROI based analysis, definition of ROls (e.g. specify the images used to
draw ROls; manual, semi-automatic or automatic definition of ROIs).

e For tracking, note step-size, turning angle, any anatomical constraints
imposed, and stopping criteria.

e |f a measure of path probability / “connectivity” is extracted, clearly define
this measure.

Perfusion: Arterial Spin Labeling | Report modelling/post-processing scheme: Y

e For subtraction, specify whether simple subtraction, running,
sinc-subtraction, etc.

e For quantitative model, specify model used, number of free parameters.

Perfusion: Dynamic e How concentration time curves are calculated, e.g. use of T1 corrections (if | Y
Susceptibility Contrast MRI short TR) or corrections for leakage.
e Selection of arterial input function (e.g. manual or automatic with reference
to method).

e Deconvolution method (kinetic model) to estimate residue function (e.g.
SVD or parametric model).
e Details of parameter calculations (e.g. CBF, CBV, MTT, TTP, Tmax).

Function-structure (intra-subject) | Report: Y
coregistration e Name of software/method.
e Type of transformation (rigid, nonlinear); if nonlinear, type of transformation
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e Cost function (e.g., correlation ratio, mutual information, boundary-based
registration, etc).
e Interpolation method (e.g., spline, linear).
Note this step might not be necessary if direct T2* to a functional template
registration is used.

Distortion correction

Use of any distortion correction due to field or gradient nonlinearity. Y

Intersubject registration

Report: Y

e Name of software/method (e.g., FSL flirt followed by fnirt, FreeSurfer,
Caret, Workbench, etc)

e Whether volume and/or surface based registration is used (if not already
clearly implied).

Image types registered (e.g. T2* or T1).

e Any preprocessing to images; e.g. for T1, bias field correction, or
segmentation of gray matter; for T2*, single image (specify image) or mean
image.

e Template space (e.g., MNI, Talairach, fsaverage, FS_LR), modality (e.g.,
T1, T2*), resolution (e.g., 2mm, fsaverage5, 32k _FS_LR), and the specific
name of template image used; note the domain of the template if not whole
brain, i.e. cortical surface only, cerebellum only, CIFTI ‘grayordinates’
(cortical surface vertices + subcortical gray matter voxels), etc.

e Additional template transformation for reporting; e.g., if using a template in
MNI space, but reporting coordinates in Talairach, clearly note and report
method used (e.g., Brett’s mni2tal, Lancaster’s icbm_spm?2tal).

e Choice of warp (rigid, nonlinear); if nonlinear, transformation type (e.g.,
B-splines, stationary velocity field, momentum, non-parametric
displacement field); if a parametric transformation is used, report
resolution, e.g., 10x10x10 spline control points.

e Use of regularization, and the parameter(s) used to set degree of
regularization.
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e Interpolation type (e.g., spline, linear); if projection from volume to surface
space, how were voxels sampled from the volume (e.g., trilinear; nearest
neighbor; ribbon-constrained specifying inner and outer surface used).

e Cost function (e.g., correlation ratio, mutual information, SSD).

e Use of cost-function masking.

Intensity correction

Bias field corrections for structural MRI, but also correction of odd versus even
slice intensity differences attributable to interleaved EPI acquisition without gaps.

Intensity normalization

Scan-by-scan or run-wide scaling of image intensities before statistical modelling.
E.g. SPM scales each run such that the mean image will have mean intracerebral
intensity of 100; FSL scales each run such that the mean image will have an
intracerebral mode of 10,000.

Artifact and structured noise
removal

Use of physiological noise correction method.
Report:
e Name of software/method used (e.g. CompCor, ICA-FIX, ICA-AROMA,
etc.).
e [f using a nuisance regression method, specify regressors used; for each
type, include key details, as follows:
o Motion parameters.
m Expansion basis and order (e.g. 1st temporal derivatives;
Volterra kernel expansion)
o Tissue signals.
m Tissue type (e.g., whole brain, gray matter, white matter,
ventricles).
m Tissue definition (e.g., a priori seed, automatic
segmentation, spatial regression).
m Signal definition (e.g., mean of voxels, first singular vector,
etc.).
o Physiological signals
m e.g., heart rate variability, respiration.
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m  Modeling choices (e.g. RETROICOR, cardiac and/or
respiratory response functions) and number of computed
regressors.

Volume censoring Remediation of problem scans, also known as “scrubbing” or “de-spiking”. Y
Report:
e Name of software/method.
e Criteria (e.g., frame-by-frame displacement threshold, percentage BOLD
change).
e Use of censoring or interpolation; if interpolation, method used (e.g., spline,
spectral estimation).

Resting state fMRI feature Creation of summary measure like ALFF, fALFF, ReHo. Y
For ALFF, fALFF report:
e Lower and upper band pass frequencies.
For ReHo, report:
e Neighborhood size used to compute local similarity measures (e.g. 6, 18 or
26).
e Similarity measure (e.g. Kendall's coefficient of concordance).

Spatial smoothing If this preprocessing step is performed, report: Y

e Name of software/method.

e Size and type of smoothing kernel.

e Filtering approach, e.g., fixed kernel or iterative smoothing until fixed
FWHM.

e Space in which smoothing is performed (i.e. native volume, native surface,
MNI volume, template surface).

Quality control reports Summaries of subject motion (e.g. mean framewise displacement), image variance | N
(e.g. DVARS), and note of any other irregularities found (e.g. motion or poor SNR
not sufficiently severe to warrant exclusion). Should be included with any publically
shared data.
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Table D.4. Statistical Modeling & Inference

Aspect Notes/Ontology Mandatory
Mass univariate analyses

Dependent variable: Data Report the number of time points, number of subjects; specify exclusions of time Y
submitted to statistical modeling | points / subjects, if not already specified in experimental design.

Dependent variable: Spatial If not “Full brain”, give a specification of an anatomically or functionally defined Y

region modeled mask.

Independent variables For first level fMRI, specify: Y

e Event-related design predictors.
o Modeled duration, if other than zero.
o Parametric modulation.
e Block Design predictors.
o Note whether baseline was explicitly modeled.
e HREF basis, typically one of:
o Canonical only.
o Canonical plus temporal derivative.
o Canonical plus temporal and dispersion derivative.
o Smooth basis (e.g. SPM “informed” or Fourier basis; FSL’s
FLOBS).
o Finite Impulse Response model.
e Drift regressors (e.g. DCT basis in SPM, with specified cut-off).

e Movement regressors; specify if squares and/or temporal derivative used.

e Any other nuisance regressors, and whether they were entered as
interactions (e.g. with a task effect in 1st level fMRI, or with group effect).
e Any orthogonalization of regressors, and set of other regressors used to
orthogonalize against.
For second level fMRI or general group model, specify:
e Group effects (patients vs. controls).
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e Clearly state whether or not covariates are split by group (i.e. fit as a
group-by-covariate interaction).
e Other between subject effects (age, sex; for VBM, total GM or ICV).
For group model with repeated measures, specify:
e How condition effects are modeled (e.g. as factors, or as linear trends).
e Whether subject effects are modeled (i.e. as regressors, as opposed to
with a covariance structure).

Model type Some suggested terms include: Y
e “Mass Univariate”.
e “Multivariate” (e.g. ICA on whole brain data).
e “Mass Multivariate” (e.g. MANOVA on diffusion or morphometry tensor
data).
e “Local Multivariate” (e.g. “searchlight”).
e “Multivariate, intra-subject predictive” (e.g. classify individual trials in
event-related fMRI).
e “Multivariate inter-subject predictive” (e.g. classify subjects as patient vs.
control).
e “Representational Similarity Analysis”.
Model settings The essential details of the model. For mass-univariate, first level fMRI, these Y

include:
e Drift model, if not already specified as a dependent variable (e.g. locally
linear detrending of data & regressors, as in FSL).
e Autocorrelation model (e.g. global approximate AR(1) in SPM; locally
regularized autocorrelation function in FSL).

For mass-univariate second level fMRI these include:
e Fixed effects (all subjects’ data in one model).
e Random or mixed-effects model, implemented with:
o Ordinary least squares (OLS, aka unweighted summary statistics
approach; SPM default, FSL FEAT’s “Simple OLS”).
o weighted least squares (i.e. FSL FEAT’s “FLAME 1”), using
voxel-wise estimate of between subject variance.
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o Global weighted least squares (i.e. SPM’s MFX).
With any group (multi-subject) model, indicate any specific variance structure, e.g.
e Un-equal variance between groups (and if globally pooled, as in SPM).
e |If repeated measures, the specific covariance structure assumed (e.g.
compound symmetric, or arbitrary; if globally pooled).

For local-multivariate report:
e The number of voxels in the local model.
e Local model used (e.g. Canonical Correlation Analysis) with any
constraints (e.g. positive weights only).

Inference: Contrast/effect

e Specification of the precise effect tested, often as a linear contrast of Y
parameters in a model. When possible, define these in terms of the task or
stimulus conditions instead of psychological concepts (See Task
Specification in Experimental Design Reporting).

e Provide tables/figures on main effects (e.g. in supplement), not just
differences or interactions. For example, an inference on a difference of
two fMRI conditions, A-B, doesn’t indicate if both A & B induced positive
changes; likewise, to fully interpret an interaction requires knowledge of the
main effects.

e Indicate any use of any omnibus ANOVA tests.

e All contrasts explored as part of the research should be fully described in
the methods section, whether or not they are considered in the results.

e If performing a two-sided test via two one-sided tests, double the one-sided
p-values to convert them into two-sided p-values. For example, if looking at
both a contrast [-1 1] and [1 -1] together, each with cluster-forming
threshold p=0.001, double the FWE cluster p-values from each contrast to
obtain two-sided inferences.

Inference: Search region

e Whole brain or “small volume”; carefully describe any small volume Y
correction used for each contrast.

e If a small-volume correction mask is defined anatomically, provide named
anatomical regions from a publicly available ROI atlas.
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e If small-volume correction mask is functionally defined, clearly describe the
functional task and identify any risk of circularity.

e All small-volume corrections should be fully described in the methods
section, not just mentioned in passing in the results.

Inference: Statistic type Typically one of: Y
e Voxel-wise (aka peak-wise in SPM).
e Cluster-wise.
o Cluster size.
o Cluster mass.
o Threshold-free Cluster Enhancement (TFCE).
For cluster size or mass, report:
e Cluster-forming threshold.
For all cluster-wise methods, report:
e Neighborhood size used to form clusters (e.g. 6, 18 or 26).
For TFCE, report:
e Use of non-default TFCE parameters.

Inference: P-value computation Report if anything but standard parametric inference used to obtain (uncorrected) |Y
P-values. If nonparametric method was used, report method (e.g. permutation or
bootstrap) and number of permutations/samples used.

Inference: Multiple testing For mass-univariate, specify the type of correction and how it is obtained, Y
correction especially if not the typical usage. Usually one of:
e Familywise Error.
o Random Field Theory (typical).
o Permutation.
o Monte Carlo.
o Bonferroni.
e False Discovery Rate.
o Benjamini & Hochberg FDR (typical).
o Positive FDR.
o Local FDR.
o Cluster-level FDR.
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e None/Uncorrected.
If permutation or Monte Carlo, report the number of permutations/samples. If
Monte Carlo, note the brain mask and smoothness used, and how smoothness
was estimated.

Functional connectivity

Confound adjustment & filtering | Report: Y
e Method for detecting movement artifacts, movement-related variation, and
remediation (e.g. ‘scrubbing’, ‘despiking’, etc).
e Use of global signal regression, exact type of global signal used and how it
was computed.
e Whether a high- or low-pass temporal filtering is applied to data, and at
which point in the analysis pipeline. Note, any temporal regression model
using filtered data should have it's regressors likewise filtered.
Multivariate method: Report: Y
Independent Component e Algorithm to estimate components.
Analysis e Number of components (if fixed), or algorithm for estimating number of
components.
e |If used, method to synthesize multiple runs.
e Sorting method of IC’s, if any.
e Detailed description of how components were chosen for further analysis.
Dependent variable definition For seed-based analyses report: Y

e Definition of the seed region(s).
e Rationale for choosing these regions.
For region-based analyses report:

e Number of ROls.

e How the ROI’s are defined (e.g. citable anatomical atlas; auxiliary fMRI
experiments); note if ROIs overlap.

e Assignment of signals to regions (i.e. how a time series is obtained from
each region, e.g. averaging or first singular vector)

e Note if considering only bilateral (L+R) merged regions.
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e Note if considering only interhemispheric homotopic connectivity.

Functional connectivity measure/ | Report: Y
model e Measure of dependence used, e.g. Pearson’s (full) correlation, partial
correlation, mutual information, etc; also specify:
o Use of Fisher's Z-transform (Yes/No) and, if standardised, effective
N is used to compute standard error (to account for any filtering
operations on the data).
o Estimator used for partial correlation.
o Estimator used for mutual information.
e Regression model used to remove confounding effects (Pearson or partial
correlation).

Effectivity connectivity Report: Y
Model.

Algorithm used to fit model.

If per-subject model, method used to generalize inferences to population.
Itemize models considered, and method used for model comparison.

Graph analysis Report the ‘dependent variable’ and ‘functional connectivity measure’ used (see Y
above).
Specify either:

e Weighted graph analysis or,

e Binarized graph analysis is used, clarifying the method used for
thresholding (e.g. a 10% density threshold, or a statistically-defined
threshold); consider the sensitivity of your findings to the particular choice
of threshold used.

Itemise the graph summaries used (e.g. clustering coefficient, efficiency, etc),
whether these are global or per-node/per-edge summaries. In particular with fMRI
or EEG, clarify if measures applied to individual subject networks or group
networks.

Multivariate modelling &
predictive analysis
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Independent variables Specify: Y
e Variable type (discrete or continuous).
e Class proportions in classification settings.
e Variable dimension.
o For whole-brain prediction, this is a voxel count.
o For searchlight analyses, the exact number of voxels in the search
region, not just a radius.
o Provide dimension before and after any feature selection and/or
dimension reduction.
If available, report on population stratification:
e Information on how the target values relate to the population (e.g.
male/female frequency or age distribution by group).
e Specify how this is taken into account in the predictive model.
Features extraction and Specify the use of any: Y
dimension reduction e Feature transformation.
e Feature selection.
e Dimension reduction.
When these techniques are data-driven, specify the procedures used to learn the
parameters involved.
Model For traditional multivariate analyses, report: Y
e Type of model, e.g. MANOVA.
e Assumptions made on the covariance structure, e.g. independence, or a
common arbitrary covariance between groups.
e Statistic used to assess significance, e.g. Wilk’s lambda, Hotelling-Lawley
trace, etc.
For predictive models, report:
e Type of model, e.g. Linear discriminant analysis, support vector machines,
logistic regression, etc.
e For kernel-based methods (i.e. SVM) report type of kernel used, type and
number of parameters needed to be estimated.
Learning method Report: Y

OHBM COBIDAS Report

65

v1.0, 2016/5/19




e Figure-of-merit optimised.
e Fitting method.
e Parameter settings, those fixed and those estimated; specify how fixed
parameter values were chosen.
e How the convergence of the learning method is monitored.
Training procedure Describe: Y
e Pipeline structure applied uniformly to all cases (e.g. that could be
independently applied to a new case).
e Method for hyper-parameter setting.
e Data splitting (cross validation).
Evaluation metrics: Discrete Describe the evaluation metrics that are to be computed. Always compute: Y
response e Accuracy.
e |f group sizes unequal, balanced (or average) accuracy.
When there are only 2 classes, and one can be labeled “positive”:
e Precision (1 — false discovery rate).
e Recall (sensitivity).
e False positive rate (1-specificity).
e F1 (incorporates both precision and recall).
e Receiver operating characteristic (ROC) curves, e.g. summarised by area
under the curve (AUC); AUC for only high specificity (e.g. false positive
rates no greater than 10%) are also useful.
When there are 3 or more classes:
e Report the confusion matrix.
Evaluation metrics: Continuous “Prediction R?”, the percentage of variance explained by prediction, computed as Y
response one minus the ratio of prediction sum-of-squares to total sum-of-squares. (Note
this is not the squared correlation coefficient between true and predicted values).
Evaluation metrics: Report the Kendall Tau statistic for each candidate model considered. Y
Representational similarity
analysis
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Evaluation metrics: Significance | When possible use formal test to obtain P-value to assess whether evaluation Y
metric is “significant” or consistent with noise.

Fit interpretation Procedure used to interpret the fit of the classifier, identifying the relative N
importance of the features (e.g. the weight vector in linear discriminant).

Table D.5. Results Reporting

Aspect Notes/Ontology Mandatory

Mass univariate analysis

Effects tested Provide a complete list of tested and omitted effects. Y

Extracted data e Define how voxels/elements were selected; if region is based on the same | Y
data, clarify how circularity was accounted for.

e For any summary reported, give units. Ideally these are as interpretable as
possible (e.g. percent change).

e If reporting R? (coefficient of determination) clarify how nuisance variability
is considered. For instance, in task fMRI the vast majority of variance is
explained by slow temporal drift, and R? values for an effect of interest will
be vastly different if computed with or without counting drift in the total
variance.

Tables of coordinates Provide one table of coordinates including: Y

e Contrast/ effect to which it refers.

e XYZ coordinate (with coordinate system, MNI, Talairach, noted in caption;
also clarify whether peak or center-of-mass location).

e Anatomical region (in caption or body text, describe source of labels, e.g.
subjective, atlas, etc).
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e P-value forming basis of inference (e.g. voxel-wise FWE corrected P; or
cluster-wise FDR corrected P).

o T/Z/F statistic (with degrees of freedom in table caption)

e In caption, state whether coordinates are from whole brain, or from a
specific constrained volume.

e If cluster-wise inference is used, the cluster size. Report in mm?® or, if in
voxels, be explicit about the size of voxels. If a cluster statistic other than
size is used (e.g. mass) it should be listed as well.

e In caption or body text, note criterion for peak per cluster reporting; e.g.
“one peak per cluster listed”, or “up to 3 per cluster that are at least 8mm
apart” (SPM default), etc.

Thresholded maps

For each effect, provide images of maps of significant regions, ensuring that each
caption describes:
e Type of inference and the correction method, as well as form of any
sub-volume corrections applied when computing corrected significance.
e Include color bars; when presenting multiple maps in a figure, use a
common color bar to ensure the results are comparable.

Unthresholded maps

Share, via supplementary material or repository:
e Unthresholded statistic maps.
e Optionally, the thresholded statistic maps.
e Optionally, the effect size map (e.g. % BOLD change, % GM change).

Extracted data

State whether data extracted from an ROI (e.g. to compute an effect size) is
defined based on independent data, as otherwise it is susceptible to bias.

If ROls are circularly defined, best not to provide any statistical summary (i.e.
P-values, R? etc).

Spatial features

Report the
e Size of the analysis volume in voxels, mm.
e Spatial smoothness of noise (e.g. FWHM) and Resel count (if using
Random Field Theory).
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Functional connectivity
ICA analyses Report the total number of components (especially when estimated from the data | Y
and not fixed). Report the number of these analyzed and the reason for their
selection.
Graph analyses: Null hypothesis | For graph-based methods, carefully state what is the null hypothesis of the test Y
tested and how the statistic distribution under the null is computed.
Multivariate modelling &
predictiveanalysis
Optimised evaluation metrics Report the values obtained for the evaluation metrics chosen (see Evaluation Y
Metrics, above), as well as any P-values to justify above-chance performance.
Table D.6. Data Sharing
Aspect Notes Mandatory
Reporting a data sharing
resource
Material shared List types of images and non-imaging data provided. Y
Report on the completeness of the data (e.g., number of subjects where all types
of imaging, demographic, and behavioral data is available).
URL, access information Provide: Y
e Stable URL or DOI.
e Specific instructions on how to gain access. Specifically mention whether
application must be vetted for particular intended research use (e.g. to
preclude multiple users investigating the same question), or whether a
research collaboration must be established.
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e Cost of access.
Ethics compliance Confirm that the ethics board of the host institution generating the data approves | Y
the sharing of the data made available.
Clarify any constraints on uses of shared data, for example, whether users
downloading the data also need ethics approval from their own institution.
Documentation Provide URL to documentation, and specify its scope (e.g. worked examples, N
white papers, etc).
Data format Report the format of the image data shared, e.g. DICOM, MINC, NIFTI, etc. Y
Ontologies Data organization structures, including Data Dictionaries and Schemas. Is the N
software using an established ontology?
Visualization Availability of in-resource visualization of the imaging or non-imaging data. N
De-identification How, if at all, data are de-identified. N
Provenance and history Availability of detailed provenance of preprocessing and analysis of shared data. | N
Interoperability Ability of a repository to work in a multi-database environment, availability of N
API’s and ability to connect to analysis pipelines.
Querying Mechanisms available for constructing queries on the repository (e.g. SQL, N
SPARQL).
Versioning How users can check version of downloaded data and compare it to the current N
version at a later time.
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Table D.7. Reproducibility

Aspect Notes/Ontology Mandatory

Documentation

Tools used Tool names, versions, and URLSs. Y

Infrastructure Machine CPU model, operating system version, any use of parallelization. Y

Workflow Use of a workflow system, its version and URL. N

Provenance trace State whether detailed provenance information is available. N

Literate program implementing Provide a URL linking to the relevant resource; for example, an ipython notebook | N

results implementing key analyses.

English language version As the scientific lingua franca, documentation should be provided in English in N
addition to any other languages.

Archiving

Tools availability Note if tools are publically available. N

Virtual appliances Note if a virtual environment to facilitate a repeated analysis is available. N

Citation

Data Provide permanent identifier if possible. N

Workflow Provide permanent identifier if possible. N
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