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Overview 

• Statistical inference is the process of deducing properties of 
an underlying distribution by analysis of data. Inferential 
statistical analysis infers properties about a population: this 
includes deriving estimates and testing hypotheses. 

 

1. Deriving estimates from the GLM 

2. Design considerations for correct inference 

3. Multivariate Inference 

 



A full model of variance 
Following Davis et al. (2014) we can distinguish  

• variations from trial to trial  modelling issues 

• variations between voxels  MVPA and connectivity issues due to 
spatial covariance  

• variations between subjects  random sampling and directionality 
of effects 



MODELLING TRIALS 
Deriving estimates from the GLM 



Accounting for neural differences 

• In many tasks, subject have to take a decision 

• Neurophysiological work points to accumulation models in which 
neurons fire until enough information is accumulated. This implies 
that decision related areas have different neural dynamics from trial 
to trial, which also differs from regions which do not have such 
dynamic. 

 

• Grinband et al. (2008) makes a distinction between variable impulse 
model (GLM with parametric modulation) and variable epoch 
model (GLM with the stimulus duration equal to RT). One issue with 
the variable epoch  model, is mis-modeling of regions show no trial-
to-trial variations, and it is not adequate for multiple 
conditions/categories. 



Accounting for neural differences 

• The best way to model such variations trial-to-trial is (1) use 
the mean RT across all trials/conditions for each regressor and 
(2) add a parametric modulation (Mumford, 2014). 

• If we add also basis functions, we can capture all variations 
and have ‘better’ beta estimates once corrected. 

response with variable neural duration 

hrf  using RT (variable epoch) 

hrf + param reg (variable impulse) 

hrf  and deriv with mean RT + param reg 

[see my poster for further info] 



Estimating single trial 

• Slow event related design are inefficient (1) for GLM  (2) 
because the number of stimuli is limited (3) because it is not 
‘natural’ for subjects. Mumford et al. (2012) showed that 
modelling all+1 gives better estimates, no matter the design. 

 

Fast er-fMRI Slow er-fMRI 



INFERENCIAL ERRORS BY DESIGN 
Design considerations for correct inference 



• Classifications (SVM/GP) are more accurate with limited 
number of classes. Multiple exemplars per class/category with 
the same number of stimuli to avoid bias toward most frequent 
stimuli.  

How many stimuli ? 

• RSA necessitate stimulus rich 
designs but is not limited to the 
number of classes. Numerous, 
non-repeated stimuli 

     (Kriegeskorte 2008) 



• For univariate analysis, dynamic stochastic designs (pseudo-
random) offers the maximum power (Friston et al., 1999). 

 

• One issue is that with large number of classes, the spacing 
becomes large – i.e. gets close to the noise.  

• Mumford et al. (2014) showed that for multivariate analysis, 
only randomized designs are appropriate. Importantly, to 
avoid a bias due to collinearity and autocorrelation, the 
randomization must be performed across subjects as well. 

 

 Optimal univariate and multivariate designs have different 
requirement.  

Which order for my stimuli ?  



• Mumford et al. 2014. 

Which order for my stimuli ?  

For RSA, pseudorandom designs lead to artificial differences. Alternating and random design  
are better, no matter the ISI (doesn’t need to be slow !) 

Within exemplar pairs 
Between exemplar pairs 



• Any collinearity and autocorrelation bias the results of MVPA. 

• Correlations and cross-validation between runs are better. 

How many runs? 

 Better to get 4*100 volumes in 4 sessions than 1x400 volumes 
(Courtanche 2013, Mumford, 2014). 



Multivariate Confound 

• Counterbalance assumes multi-directional effects. For 
instance learning effect in the sequence of tasks ABC is 
balanced with CBA. 

• In univariate analyses, testing for AC is not confounded with 
learning because it is cancelled out averaging estimates across 
subjects. In multivariate analyses where we use mean 
accuracy or correlation, it is confounded: the effect is there 
for each subject and not cancelled because the direction of 
the effect is not present in those measures (Todd et al. 2013). 

• In RSA, we need to ensure full design balance (ABC, ACB, BAC, 
BCA, CAB, CAB) as symmetric designs can lead to symmetric 
RSM.  



MULTIVARIATE INFERENCE 
Interpretation errors 



Testing for patterns 

• If all voxels show a small effect A>B, MVPA will be significant. 

• Yet this is not a ‘pattern’ as one might understand it. 

A linear classifier can take advantage of the small, yet 
consistent differences in mean activations 



Inference 

• Pattern differences = distributed processes? 

• Davis et al. (2014) showed that MVPA strives on variations 
between voxels even for unidimensional differences 

• Coutanche (2013) propose a series of steps to test 
dimensionality for SVM: 

 remove across voxel means at each 
time point to ensure the response is 
driven by the variance (no mean 
diff) 

 compare results with/without the 
mean 



Inference 

• sparse  selective 

• Assuming the  multidimensional nature of a signal in the set 
of regions, Foldiak (2009) remind us that selectivity is a 
property of neurons, whilst sparseness is an encoding 
property relative to stimuli.  

The same rule applies to voxels: 
having heavy weighting on one 
or a few voxels doesn’t mean 
they are selective to some 
features – but the ‘code’ is 
more likely local or sparse. 



Take Home Message 

• Modelling (GLM) is not trivial, mis-modelling can lead 
to create or obscure MVPA differences (use mean RT, 
parametric, BF). 

 

• Optimize designs for MVPA (stimuli, runs, order) 

 

• Carefully interpret results using additional tests for 
dimensionality, sparsity, selectivity 
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