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Abstract

Recent years have seen an increase in alarming signals regarding the lack of replicability in
neuroscience, psychology, and other related fields. To avoid a widespread crisis in
neuroimaging research and consequent loss of credibility in the public eye, we need to improve
how we do science. This article aims to be a practical guide for researchers at any stage of their
careers that will help them make their research more reproducible and transparent while
minimizing the additional effort that this might require. The guide covers three major topics in
open science (data, code, and publications) and offers practical advice as well as highlighting
advantages of adopting more open research practices that go beyond improved transparency
and reproducibility.

Introduction

The question of how the brain creates the mind has captivated humankind for thousands of
years. With recent advances in human in vivo brain imaging, we how have effective tools to
peek into biological underpinnings of mind and behavior. Even though we are no longer
constrained just to philosophical thought experiments and behavioral observations (which
undoubtedly are extremely useful), the question at hand has not gotten any easier. These
powerful new tools have largely demonstrated just how complex the biological bases of
behavior actually are. Neuroimaging allows us to give more biologically grounded answers to
burning questions about everyday human behavior (“why do we crave things?”, “how do we
control learned responses?”, “how do we regulate emotions?” etc.), as well as influencing how
we think about mental illnesses.

In addition to fantastic advances in terms of hardware we can use to study the human brain
(function Magnetic Resonance Imaging, Magnetoencephalography, Electroencephalography
etc.) we have also witnessed many new developments in terms of data processing and
modelling. Many bright minds have contributed to a growing library of methods that derive
different features from brain signals. Those methods have widened our perspective on brain
processes, but also resulted in methodological plurality [1]. Saying that there is no single best
way to analyze a neuroimaging dataset is an understatement; we can confidently say that there
many thousands of ways to do that.

Having access to a plethora of denoising and modelling algorithms can be both good and bad.
On one side there are many aspects of brain anatomy and function that we can extract and use
as dependent variables, which maximizes the chances of finding the most appropriate and
powerful measure to ask a particular question. On the other side, the incentive structure of the
current scientific enterprise combined with methodological plurality can be a dangerous mix.
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Scientists rarely approach a problem without a theory, hypothesis, or a set of assumptions, and
the high number of “researcher degrees of freedom” [2] can implicitly drive researchers to
choose analysis workflows that provide results that are most consistent with their hypotheses.
As Richard Feynman said “The first principle is that you must not fool yourself — and you are
the easiest person to fool.”. Additionally, neuroimaging (like almost every other scientific field)
suffers from publication bias, in which “null” results are rarely published, leading to
overestimated effect sizes (for review of this and other biases see [3].

Recent years have seen an increase in alarming signals about the lack of replicability in
neuroscience, psychology, and other related fields [4]. Neuroimaging studies generally have low
statistical power (estimated at 8%) due to the high cost of data collection which results in an
inflation of the number of positive results that are false [5], . To avoid a widespread crisis in our
field and consequently losing credibility in the public eye, we need to improve how we do
science. This article aims to complement existing literature on the topic [6-8] by compiling a
practical guide for researchers at any stage of their careers that will help them make their
research more reproducible and transparent while minimizing the additional effort that this might
require.
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Figure 1. Three pillars of Open Science: data, code, and papers.

How to deal with data

Data are a central component of the scientific process. When data are made open accessible,
they not only allow the scientific community to validate the accuracy of published findings, but
also empower researchers to perform novel analyses or combine data from multiple sources.
Papers accompanied by publicly available data are on average cited more often [9,10], while at
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the same time exposing fewer statistical errors [11]. Data sharing has been mandated by some
grant funding agencies, as well as journals. Some also argue that sharing data is an ethical
obligation toward study participants, in order to maximize the benefits of their participation [12].
Neuroimaging has a substantial advantage in terms of ease of data capture since the data
generation process is completely digital. In principle one could provide a digital record of the
entire research process for the purpose of reproducibility. However, even though data sharing in
neuroimaging has been extensively reviewed in [13] and [14] there is little practical advice on
the topic.

Consent forms

Planning for data sharing should start at the ethical approval stage. Even though in the United
States de-identified data can be freely shared without specific participant consent, the rules
differ in other countries (and they may change in the upcoming revisions to the Common Rule,
which governs research in the US). In addition it is only fair to inform your participants about
your intention to maximize their generous gift by sharing their data, and to allow them to
withdraw from research if they don’t wish to have their data shared. However, consent form
language needs to be carefully crafted. To streamline the creation of consent forms with data
sharing clauses, we have prepared a set of templates that can be easily inserted into existing
consent forms after minor adjustments'. Those templates have been derived from existing
consent forms of leading data sharing projects (Nathan Kline Institute Enhanced sample [15]
and Human Connectome Project [16]) followed by consultations with bioethics experts. The
templates come in two flavors: one for normal populations and generic data and one for
sensitive populations and/or data. The latter splits the data into two sets: a publicly available
portion and a portion that requires approval of a data sharing committee (that would assess the
ability of the applicant to protect sensitive data) in order to gain access to. We recommend using
the restricted access version only for data and populations for which a) potential data
re-identification is easy due to small sample and/or the level of detail of included variables (for
example exact time and location of scanning) or b) re-identification would lead to negative
consequences for the participants (for example in a study of HIV-positive subjects).

Data organization

To successfully share data one has to properly describe it and organize it. Even though some
experimental details such as the MRI phase encoding direction may seem obvious for the
researcher who obtained the data, they need to be clearly explained for external researchers. In
addition, good data organization and description can reduce mistakes in analysis. While each
experiment is different and may include unique measurements or procedures, most MRI
datasets can be accurately described using one fairly simple scheme. Recently we have
proposed such scheme - the Brain Imaging Data Structure (BIDS) [17]. It was inspired by the
data organization used by OpenfMRI database, but has evolved through extensive consultations
with the neuroimaging community. BIDS aims at being simple to adopt,and roughly follows
existing practices common in the neuroimaging community. It is heavily based on a specific

' https://open-brain-consent.readthedocs.org/en/latest/ultimate.html
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organization of files and folders and uses simple file formats such as NifTl, tab-separated text
and JSON. It does not require a database or any external piece of software for processing. A
browser-based validator has been developed that allows one to easily check whether a dataset
accurately follows the BIDS standard?.

An additional benefit of using a standardized data organization scheme is that it greatly
streamlines the data curation that is necessary when submitting data to a data sharing
repository. For example datasets formatted according to BIDS undergo a faster and more
streamlined curation process when submitted to OpenfMRI database [18].

Publishing data

Data should be submitted to a repository before submitting the relevant paper. This allows the
author to point the readers and reviewers to the location of the data in the manuscript. The
manuscript can benefit from increased transparency due to shared data and the data itself can
become a resource enabling additional future research.

The most appropriate places for depositing data are field-specific repositories. Currently in
human neuroimaging there are two well recognized repositories accepting data from everyone:
FCP/INDI [19] (for any datasets that include resting state fMRI and T1 weighted scans) and
OpenfMRI [18] (for any datasets that include any MRI data). Field specific repositories have the
advantage of more focused curation process that can greatly improve the value of your data.
They also increase data discoverability since researchers search through them first when
looking for datasets, and some (like OpenfMRI) are indexed by PubMed which allows the
dataset to be directly linked to the paper via the LinkOut mechanism.

If for some reason field specific repositories are not an option we recommend using field
agnostic repositories such as FigShare, Dryad, or DataVerse. When picking a repository one
should think of long term data retention. No one can guarantee existence of a repository in the
far future, but historical track record and the support of well established institutions can increase
the chances that the data will be available in the decades to come. In addition a platform such
as Open Science Framework (www.osf.i0) can be used to link together datasets deposited in
field agnostic repositories with code and preprints (see below). If one is concerned about losing
competitive advantage by sharing data before the relevant manuscript will be accepted and
published (so called “scooping”) one can consider setting an embargo period on the submitted
dataset. OSF?, figshare*, and Dryad® support this functionality.

Since data-agnostic repositories do not impose any restriction on the form in which you deposit
your data nor do they check completeness, it is essential to ensure that all of the necessary
data and metadata are present. Using a data organization scheme designed for neuroimaging
needs such as BIDS or XCEDE [20] can help ensure that data are represented accurately. In
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addition, it is a good idea to ask a colleague who is unfamiliar with the data to evaluate the
quality and completeness of the description.

If the data accompanying the paper is very large or particularly complex you should consider
writing a separate data paper to describe the dataset [21]. A data paper is new type of
publication dedicated purely to description of the data rather than its analysis. It can provide
more space to describe the experimental procedures and data organization details, and also
provides a mechanism for credit when the data are reused in the future. In addition, one often
receives useful feedback about the dataset description through the peer review process. The list
of journals that currently accept neuroimaging data papers includes but is not limited to:
Scientific Data, Gigascience, Data in Brief, F1000Research, Neuroinformatics, and Frontiers in
Neuroscience.

In addition to raw data we also encourage authors to share derivatives such as preprocessed
volumes, statistical maps or tables of summary measures. Because other researchers are often
interested in reusing the results rather than the raw data, this can further increase the impact of
the data. For example, statistical maps can be used to perform image-based meta analysis or
derive regions of interest for new studies. For sharing statistical maps we encourage authors to
use the NeuroVault.org platform [22]. The UCLA Multimodal Connectivity Database [23]
provides similar service but for connectivity matrices (derived from fMRI or DWI data).

Finally published data should be accompanied by an appropriate license. Data are treated
differently by the legal system than creative works (i.e. papers, figures) and software and thus
require special licenses. Following the lead of major scientific institutions such as BioMed
Central, CERN, or The British Library we recommend using an unrestricted Public Domain
license (such as CCO or PDDL) for data®. Using such license would maximize the impact of the
shared data, by not imposing any restriction on how it can be used and combined with other
data. The appropriate legal language that needs to accompany your data can be obtained from
https://creativecommons.org/publicdomain/zero/1.0 or
http://opendatacommons.org/licenses/pddl//. There are also other more restrictive license
options (see http://www.dcc.ac.uk/resources/how-guides/license-research-data). However,
additional restrictions can have unintended consequences. For example, including a
Non-Commercial clause, while seemingly innocuous, could in its broadest interpretation prevent
your data from being used for teaching or research at a private university. Similarly, a
No-Derivatives clause can prevent your data from being combined in any form with other data
(for example a brain template released under No-Derivatives license cannot be used as a
coregistration target).

How to deal with code

Neuroimaging data analysis has required computers since its inception. A combination of
compiled or script code is involved in every PET, MRI, or EEG study, as in most other fields of
science. The code we write to analyze data is a vital part of the scientific process, and similar to

8 https://wiki.creativecommons.org/wiki/CCO_use_for_data
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data, is not only necessary to interpret and validate results, but can be also used to address
new research questions. Therefore the sharing of code is as important as the sharing of data for
scientific transparency and reproducibility.

Because most researchers are not trained in software engineering, the code that is written to
analyze neuroimaging data (as in other areas of science) is often undocumented and lacks the
formal tests that professional programmers use to ensure accuracy. In addition to the lack of
training, there are few incentives to spend the time necessary to generate high-quality and
well-documented code. Changes in the incentive structure of science will take years, but in the
meantime, perceived poor quality of code and lack of thorough documentation should not
prevent scientists from publishing it [24]. Sharing undocumented code is a much better than not
sharing code at all and can still provide benefits to the author. Perhaps the most compelling
motivation for sharing code comes from citation rates. Papers accompanied by usable code are
on average cited more often than their counterparts without the code [25].

An additional concern that stops researchers from sharing code is fear that they will have to
provide user support and answer a flood of emails from other researchers who may have
problems understanding the codebase. However, sharing code does not oblige a researcher to
provide user support. One useful solution to this problem is to set up a mailing list (for example
with Google) and point all users to ask questions through it; in this way, answers are
searchable, so that future users with the same questions can find them via a web search.
Alternatively one can point user to a community driven user support forum for neuroinformatics
(such as NeuroStars.org) and ask them to tag their questions with a label uniquely identifying
the software or script in question; we have found this to be a useful support solution for the
OpenfMRI project. Both solutions foster a community that can lead to users helping each other
with problems, thus relieving some of the burden from the author of the software. In addition,
since the user support happens through a dedicated platform there is less pressure on the
author to immediately address issues than there would be with user requests send directly by
email.

Many of the issues with code quality and ease of sharing can be addressed by careful planning.
One tool that all research programmers should incorporate into their toolbox is the use of a
Version Control System (VCS) such as git. VCS provides a mechanism for taking snapshots of
evolving codebase that allow tracking of changes and reverting them if there is a need (e.g.,
after making a change that ends up breaking things). Adopting a VCS leads a to cleaner code
base that is not cluttered by manual copies of different versions of a particular script (e.g,
“script_version3_good_Jan31_try3.py”). VCS also allows one to quickly switch between
branches - alternative and parallel versions of the codebase - to test a new approach or method
without having to alter a tried and tested codebase. For a great introduction to git we refer the
reader to [26]. We encourage scientists to use git rather than other VCS due to a passionate
and rapidly growing community of scientists who use the GitHub.com platform, which is a freely
available implementation of the git VCS system. In the simplest use case GitHub is a platform
for sharing code (which is extremely simple for those who already use git as their VCS), but it
also includes other features which make contributing to collaborative projects, reviewing, and
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testing code simple and efficient. The Open Science Framework mentioned above can be used
to link together data and code related to a single project. It can also be used to set embargo
period on the code so it could be submitted with the paper while minimising the risk of
“scooping”.

Striving for automation whenever possible is another strategy that will not only result in more
reproducible research, but can also save a lot of time. Some analysis steps seem to be easy to
perform manually, but that remains true only when they need to be performed just once. Quite
often in the course of a project parameters are modified, list of subjects are changed, and
processing steps need to be rerun. This is a situation in which having a set of scripts that can
perform all of the processing steps automatically instead of relying on manual interventions can
really pay off. There are many frameworks that help design and efficiently run neuroimaging
analyses in automated fashion. Those include, but are not limited to: Nipype [27], PSOM [28],
aa [29], and make [30]. As an example, for our recent work on the MyConnectome project[31]
we created a fully automated analysis pipeline, which we implemented using a virtual machine’.

While automation can be very useful for reproducibility, the scientific process often involves
interactive interrogation of data interleaved with notes and plots. Fortunately there is a growing
set of tools that facilitate this interactive style of work while preserving a trace of all the
computational steps, which increases reproducibility. This philosophy is also known as “literate
programming” [32] and combines analysis code, plots, and text narrative. The list of tools
supporting this style of work includes, but is not limited to: Jupyter (for R, Python and Julia)?, R
Markdown (for R)? and matlabweb (for MATLAB)'. Using one of those tools not only provides
the ability to revisit an interactive analysis performed in the past, but also to share an analysis
accompanied by plots and narrative text with collaborators. Files created by one of such
systems (in case of Jupyter they are called Notebooks) can be shared together with the rest of
the code on GitHub, which will automatically render included plots so they can be viewed
directly from the browser without requiring installation of any additional software.

As with data, it is important to accompany shared code with an appropriate license. Following
[6] we recommend choosing a license that is compatible with the open source definition such as
Apache 2.0, MIT, or GNU General Public License (GPL)"'. The most important concept to
understand when choosing a license is “copyleft”. A license with a “copyleft” property (such as
GPL) allows derivatives of your software to be published, but only if done under the same
license. This property limits the range of code your software can be combined with (due to
license incompatibility) and thus can restrict the reusability of your code; for this reason, we
generally employ minimally restrictive licenses such as the MIT license. Choosing an open
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source license and applying it to your code can be greatly simplified by using a service such as
choosealicense.com.

How to deal with publications

Finally, the most important step in dissemination of results is publishing a paper. An essential
key to increasing transparency and reproducibility of scientific outputs is accurate description of
methods and data. This not only means that the manuscript should include links to data and
code mentioned before (which entails that both data and code should be deposited before
submitting the manuscript), but also thorough and detailed description of methods used to come
to a given conclusion. As an author one often struggles with a fine balance between detailed
description of different analyses performed during the project and and the need to explain the
scientific finding in the most clear way. It is not unheard of that for the sake of a better narrative
some results are omitted'. At the same time there is a clear need to present results in a
coherent narrative with a clear interpretation that binds the new results with an existing pool of
knowledge™. We submit that one does not have exclude the other. A clear narrative can be
provided in the main body of the manuscript and the details of methods used together with null
results and other analyses performed on the dataset can be included in the supplementary
materials, as well as in the documentation of the shared code. In this way, the main narrative of
the paper is not obfuscated too many details and auxiliary analyses, but all of the results (even
null ones) are available for the interested parties. Such results from extra analyses could include
for example all of the additional contrasts that were not significant and thus not reported in the
main body of the manuscript (of which unthresholded statistical maps should be shared for
example using a platform such as NeuroVault). Often these extra analyses and null results may
seem uninteresting from the author's point of view, but one cannot truly predict what other
scientists can be interested in. In particular, the null results (which are difficult to publish
independently) can contribute to growing body of evidence that can be used in the future to
perform meta analyses.For more extensive set of recommendation for reporting neuroimaging
studies, see the recent report from the Organization for Human Brain Mapping's Committee on
Best Practices in Data Analysis and Sharing (COBIDAS) report™.

The last important topic to cover is accessibility of the manuscript. To maximize the impact of
published research one should consider making the manuscript publicly available. In fact many
funding bodies (NIH, Wellcome Trust) require this for all manuscripts describing research that
they have funded. Many journals provide an option to make papers open access, albeit
sometimes at prohibitively high price (for example the leading specialist neuroimaging journal -
Neurolmage - requires a fee of $3000). Unfortunately the most prestigious journals (Nature and
Science) do not provide such option despite many requests from the scientific community.
Papers published in those journals remain “paywalled” - available only through institutions which
pay subscription fees, or through public repositories (such as PubMed Central) after a
sometimes lengthy embargo period. The scientific publishing landscape is changing [33,34], and
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we hope it will evolve in a way that will give everyone access to published work as well as to the
means of publication. In the meantime we recommend ensuring open access by publishing
preprints at Bioxiv or arXiv before submitting the paper to a designated journal. In addition to
making the manuscript publicly available without any cost, this solution has other advantages.
Firstly it allows the wider community to give feedback to the authors about the manuscript and
potentially improve it which is beneficial for both the authors as well as the journal the paper will
be submitted to; for example, the present paper received useful comments from three
individuals in addition to the appointed peer reviewers. Secondly, in case of hot topics
publishing a preprint establishes precedence on being the first one to describe a particular
finding. Finally since preprints have assigned DOls other researchers can reference them even
before they will be published in a journal. Preprints are increasingly popular and vast majority of
journals accept manuscripts that have been previously published as preprints. We are not
aware of any neuroscience journals that do not allow authors to deposit preprints before
submission, although some journals such as Neuron and Current Biology consider each
submission independently and thus one should contact the editor prior to submission.

To further improve accessibility and impact of research outputs one can also consider sharing
papers that have already been published in subscription based journals. Unfortunately this can
be difficult due to copyright transfer agreements many journals require from authors. Such
agreement give the journal exclusive right to the content of the paper. However, each publisher
uses a different set of rules and some of them allow limited sharing of your work you have
surrender your rights to. For example Elsevier (publisher of Neurolmage) allows authors to
publish their accepted manuscripts (without the journal formatting) on a non-commercial
website, a blog or a preprint repository'®. Wiley (publisher of Human Brain Mapping) has a
similar policy for submitted manuscripts (before the paper gets accepted), but requires an
embargo of 12 months before authors can share the accepted manuscript'®. Policies for other
journals might vary. SherPa/ROMEO (http://www.sherpa.ac.uk/romeo) is a databaset that allows
authors to quickly check what the journal they published with allows to share and when.

There are multiple options when it comes to choosing a repository to share manuscripts
published in subscription-based journals. Private websites, institutional repositories, and preprint
servers seems to be well within the legal restrictions of most journals. Commercial websites
such as researchgate.com and academia.edu remain a legal grey zone (with some reports of
Elsevier taking legal actions to remove papers from one of them'). If the research has been at
least partially funded by NIH one can deposit the manuscript in PubMed Central (respecting
appropriate embargos)'®.

'® https://www.elsevier.com/about/company-information/policies/sharing
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Discussion

In this guide we have carefully selected a list of enhancements that every neuroimaging
researcher can make to their scientific workflow that will improve the impact of their research,
benefiting not only them individually the community as a whole. We have limited the list to
mechanisms that have been tested and discussed in the community for number of years and
which have clear benefits to the individual researcher. However, the way science is conducted
is evolving constantly and there are many more visions that could be implemented. In the
following section we discuss some of the emerging trends that may become commonplace in
the future.

Pre-registration

We have mentioned in the introduction that the field of neuroimaging is both blessed and cursed
with plurality of analysis choices which can lead to biases in published results (since many
decisions about statistical treatment of data are made after seeing the data). We recommended
taking advantage of supplementary materials to elaborate on all performed analyses and
sharing statistical maps of null effect contrasts as a partial remedy of this problem. However,
further reduction of publication bias can be achieved even more effectively by adopting the
pre-registration mechanism [35]. This way of doing research, originally adopted from clinical
trials, involves writing and registering (in a third party repository) a study plan outlining details of
data acquisition, subject exclusion criteria, and planned analyses even before that data have
been acquired. This not only motivates researchers to formulate hypotheses before seeing data,
but also allows for a clear distinction between results of hypothesis driven confirmatory analyses
(included in the pre-registration) and exploratory analyses (added after seeing the data). It is
worth mentioning that exploratory analyses are by no means inferior to confirmatory analyses;
they are an important part of science, generating new hypotheses that can be tested by future
studies. However exploratory analyses can suffer from bias (since their inception was influenced
by the data itself) and thus require additional evidence. Unfortunately, confirmatory and
exploratory analyses are often not properly distinguished in publications, a problem that could
be remedied by preregistration. Preregistration also plays a vital role in highlighting hypotheses
that turned out not to be confirmed by the data (“null effects”).

It is clear that preregistration can help in research transparency and reproducibility by reducing
biases. It is also important to acknowledge that putting together and registering a binding
research plan requires a significant time investment from the researcher and thus is not
common a common practice (with exception to replication studies [4,36]). There are, however,
additional incentives for individual researchers to preregister their studies. For example, the
Center for Open Science spearheaded the Registered Reports® initiative in 2012. According to
this mechanism, authors send their preregistration reports (Introduction, Methods parts of a
future paper and optionally analysis of pilot data) for peer review to a journal for peer review.
Validity of the experimental plan is assessed and if deemed sufficient receives “In-principle
acceptance” (IPA), in which case the journal guarantees to publish the final version of the paper

1% https://osf.io/8mpiji
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(after data collection and analysis) independently of the results (i.e. even if the hypothesized
effect was not found).. Currently journals accepting in neuroimaging papers participating in the
Registered Reports program include: AIMS Neuroscience [37], Attention, Perception, and
Psychophysics, Cognition and Emotion [38], Cortex [39] and European Journal of
Neuroscience. Additionally, The Center for Open Science started a Preregistration Challenge®
providing $1000 reward for the first 1000 preregistered eligible studies. This initiative is
independent of the Registered Reports and does not guarantee publication, but the list of
eligible journals is much longer (includes such journals as PloS Biology, Hippocampus, or
Stroke).

Peer review and giving feedback

An important part of the scientific method is peer review but with a few notable exceptions
(eLife, GigaScience, ScienceOpen, and F1000Research), the review procedure happens
behind closed doors and thus leaves the reader without any information on how a published
paper was evaluated (other than the fact that it was accepted). In addition, at most journals
reviewers do not get credit for their hard work, though some (such as the Frontiers journals) list
the reviewers on each published paper. This situation can be remedied by publishing reviews
performed for journals after the paper has been published. Several outlets exists that allow that.
PubMed Commons allow registered and verified users of PubMed to provide comments under
every paper indexed by PubMed. Those comments have to be signed so there is no option to
remain anonymous (which is important for junior researchers afraid of a blowback after
criticizing work from an established lab). Another option is PubPeer - a website that allow
anyone to comment on any published paper or preprint. It supports both anonymous and signed
comments so it’s up to the reviewer to decide what is better for them. Finally there is
Publons.com - a platform for tracking reviewers profiles and publishing reviews. Thanks to
collaborations with many journals it is very easy to use and even allows you to get credit for
publishing your reviews anonymously.

All of those platforms can be used not only to share reviews solicited from reviewers by journals,
but also to share comments and give feedback about already published work or preprints
shared by other researchers. Peer review expanded to the whole community can improve the
quality of research, catch mistakes, or help with the clarity of both preprints and already
published work. Giving feedback on preprints can be especially useful when it comes to
highlighting already published work that authors might have missed (which considering the
number of papers published every year is not unlikely).

Signing openly shared reviews can have some benefits when it comes to establishing one's
reputation as an expert in the field. Well thought through and carefully worded reviews
consisting of constructive criticism are hard to come by and extremely valuable. By sharing and
signing reviews researchers can not only help their peers, but also boost their reputation which
can potentially seen favourably by hiring committees and grant review boards. However, we feel
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that the option of anonymous reviews remains very important since on many occasions it will be
the only way for researchers to express concerns about validity of some work.

Box 1. Simple steps towards open science

Data:
e Include a section about data sharing to your consent forms.
e Share your raw data upon paper submission using a repository dedicated for
neuroimaging.
e Consider writing a separate data paper for more complex and interesting datasets.
e Remember that sharing your data improves the impact and citation rates of your
research!
Code:
e Use version control system for all your projects.
Share your code on GitHub.com even if it's not well documented.
Set up a mailing list for user related questions.
People reusing the code you shared will cite the relevant papers.

Papers:
e Include all extra analyses and null results in the supplementary materials without
sacrificing the clarity of the message in the main body of the manuscript.
e Submit preprints to claim precedence, solicit feedback and give access to your
research.

Summary

The scientific method is evolving towards a more transparent and collaborative endeavour. The
age of digital communication allows us to go beyond printed summaries and dive deeper into
underlying data and code. In this guide we hope to have shown that there are many
improvements in scientific practice everyone can implement with relatively little added effort that
will improve transparency, replicability and impact of their research. Even though the added
transparency might in rare cases expose errors those are a natural part of the scientific process,
as a community researchers should acknowledge their existence and try to learn from them
instead of hiding them and antagonizing those who make them.
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Registered Reports: A step change in scientific publishing
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Professor Chris Chambers, Registered Reports Editor of the Elsevier journal Cortex
and one of the concept’s founders, on how the initiative combats publication bias

By Professor Chris Chambers Posted on 13 November 2014

Share story:

Last year, Cortex launched an exciting initiative called Registered Reports — a format of empirical article that places
study pre-registration at the center of peer review.

Our aim with Registered Reports is to enhance the transparency and reproducibility of E
science by reviewing study protocols before experiments are conducted. If we think the
protocol has merit we will commit, in advance, to publishing the outcomes. Armed with this
provisional acceptance of their work, authors can perform the research safe in the
knowledge that the results themselves will not determine the article's publication. At the
same time, readers of the final paper can feel more confident that the work is reproducible
because the initial study predictions and analysis plans were independently reviewed.

(Cortex

Gauging the community's reaction

Registered Reports represents a major departure from standard peer review, and at the time of the Cortex launch
there was much uncertainty about how the shift would be regarded. Would the scientific community take notice?
Would the format be popular? What kinds of submissions would we receive? To raise the profile of the initiative, we
wrote an open letter to The Guardian, signed by more than 80 scientists and members of journal editorial boards.
Together, we called for Registered Reports to be offered across the Life Sciences as a way to liberate academia
from the grip of managerial incentives that favor the production of publications over genuine discovery.

Since then, the response from the scientific community suggests that Registered Reports are poised to transform
the publishing landscape. In addition to Cortex, where the first completed articles will soon be published, we've seen
the format taken up by more than a dozen journals across Neuroscience, Psychology, Psychiatry, Biology, Nutrition,
and Medicine, with many more in the pipeline. I'd like to highlight just a few examples:

e Earlier this year, the journal Social Psychology published a high-profile special issue of Registered Reports
that tested the reproducibility of classic psychological phenomena.

e Anew journal, Comprehensive Results in Social Psychology, is dedicated entirely to the Registered Reports.

e clLifeis hosting a special issue of Registered Reports to assess the reproducibility of cancer biology research.

¢ Another major journal, to be named in the coming weeks, is poised to unveil them across the full spectrum of

sciences ranging from Physics to Psychology.

This is just a snapshot of the progress we've seen since last summer (see here for a complete and regularly
updated list of journals, frequently asked questions, and more).
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Arange of problems threaten the integrity of the scientific method. Such practices have been documented most
thoroughly in Psychology, which is characterized by a paucity of replication studies, insufficient statistical power, a
high prevalence of cherry picking (also known as p-hacking), post hoc hypothesising, lack of data sharing, and a
journal culture marked by publication bias. Registered Reports are designed to counteract all of these problems.
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Figure 1: Hypothetico-deductive scientific method

Understanding the appeal of Registered Reports

So why is this proving such an attractive reform? First and foremost, the idea of accepting papers before results are
known moves us beyond the assumption that the visibility of a scientific study should depend on its outcome. A
number of Social Sciences and Life Sciences journals are locked in the grip of this powerful bias, prioritizing the
publication of positive, novel findings while rejecting those that are negative. Even in medical research, where trial
protocols have been pre-registered for decades, null or negative findings are far less likely to be published. By
selectively reporting positive results we distort the literature, needlessly populating journals with false conclusions
and sabotaging the ability of science to self-correct.

The reason for this publication bias is simple human nature: in judging whether a manuscript is worthy of
publication, editors and reviewers are guided not only by the robustness of the method but by their impressions of
what the results contribute to knowledge. Do the outcomes constitute a major advance, worthy of space within a
journal that rejects the majority of submissions? Results that are novel and eye-catching are naturally seen as more
attractive and competitive than those that are null or ambiguous, even when the methodologies that produce them
are the same. This bias, in turn, creates perverse incentives for individuals. When we reward scientists for getting
"publishable results", we encourage a host of questionable practices to produce them (see Figure 1).

The unique selling point of Registered Reports is that they eliminate the need for scientists to strive for "publishable
results". Registered Reports enshrine the ethos that science earns its stripes from the value of the research question
and the rigor of the method, and never from whether the data sing a good tune. This idea is as old as the scientific
method itself; in fact, it almost feels wrong to call Registered Reports an innovation in publishing when it is closer to
being a restoration — a reinvention of publishing and the peer-review process as it was meant to be.
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Some scientists have expressed fears that Registered Reports could restrict creativity by requiring authors to adhere
to a fixed research methodology. In fact — and this is important to emphasize — the Registered Reports initiative
places no restrictions whatsoever on creativity, flexibility or the reporting of serendipitous findings . While it is true
that the pre-specified methods in a Registered Report must be followed, there are no bounds on the reporting of
additional unregistered analyses. The only requirement is that such additional material is labelled transparently so
that readers know which analyses were pre-registered and which were exploratory.

Where next for Registered Reports?

Ultimately, it is up to all of us to determine the future of any reform, and if the community continues to support
Registered Reports then that future looks promising. Each field that adopts this initiative will be helping to create a
scientific literature that is free from publication bias, that celebrates transparency, that welcomes replication as well
as novelty, and in which the reported science will be more reproducible. Registered Reports isn't a one-shot cure for
scientific publishing, but with every new journal that offers the format, and with every new article published, we
strengthen the scientific record and offer scientists a positive incentive to embrace best practice.

Figure 2 illustrates the editorial pipeline for Registered Reports at Cortex, which has also been adopted by several
other journals, including Drug and Alcohol Dependence. Details on review criteria and answers to frequently asked
questions are available online.
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Figure 2: The editorial pipeline for Registered Reports at Cortex
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Chris Chambers (@chrisdc77) is a Professor of Cognitive Neuroscience at Cardiff
University, Section Editor for Registered Reports at Cortex and AIMS Neuroscience, and
Chair of the Registered Reports Committee at the Center for Open Science. His main
research interests include the psychology and neuroscience of human impulse control, the
interaction between science and the media, and evidence-based public policy.
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It is becoming increasingly clear that science has sailed into troubled waters. Recent
revelations about cases of serious research fraud and widespread ‘questionable research
practices’ have initiated a period of critical self-reflection in the scientific community
and there is growing concern that several common research practices fall far short of
the principles of robust scientific inquiry. At a recent symposium, ‘Improving Scientific
Practice: Dealing with the Human Factors’ held at The University of Amsterdam, the
notion of the objective, infallible, and dispassionate scientist was firmly challenged.
The symposium was guided by the acknowledgement that scientists are only human,
and thus subject to the desires, needs, biases, and limitations inherent to the human
condition. In this article, five post-graduate students from University College London
describe the issues addressed at the symposium and evaluate proposed solutions to
the scientific integrity crisis.

Introduction serious researcher fraud (e.g., Levelt-Noort-

The success of science is often attributed to
its objectivity: surely science is an impartial,
transparent, and dispassionate method for
obtaining the truth? In fact, there is grow-
ing concern that several aspects of typical
scientific practice conflict with these princi-
ples and that the integrity of the scientific
enterprise has been deeply compromised.
The diverse range of issues include cases of
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Drenth Committee, 2012; RIKEN Research
Paper Investigative Committee, 2014), sub-
stantial publication bias towards positive
findings (Rosenthal, 1979; Fanelli, 2012), a
preponderance of statistically underpowered
studies that produce inflated and/or unre-
liable effects (Button, loannidis, Mokrysz,
Nosek, Flint, Robinson, & Munafo, 2013),
incomplete or erroneous reporting of study
methodology (Carp, 2012; Vasilevsky, Brush,
Paddock, Ponting, Tripathy et al., 2013),
failure to comply with data access requests
(Wicherts, Borsboom, Kats, & Molenaar,
2006), and the widespread prevalence of
‘questionable research practices’ that can
insidiously generate false-positive findings
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(Simmons, Nelson & Simonsohn, 2011; John,
Loewenstein, & Prelec, 2012). In 2005, a
devastating statistical proof was published,
which claimed that ‘most published research
findings are false’ (loannidis, 2005) and sub-
sequent efforts to replicate existing findings
have suggested that the suspected ‘reproduc-
ibility crisis’ is not just theoretically plausi-
ble; it is an empirical reality (Begley & Ellis,
2012; Prinz, Schlange, & Asadullah, 2017;
Gilbert, 2014).

How is the scientific community to begin
addressing these issues? For the organisers
of a recent symposium, ‘Improving Scientific
Practice: Dealing with the Human Factors’
hosted by The University of Amsterdam, the
first step is to recognise that science is fun-
damentally a human endeavour, and thus
subject to the limitations and biases that
underlie human behaviour. Can we design a
scientific ecosystem that acknowledges sci-
entists are only human?

1. The damaged scientific ecosystem
The utopian idea of a ‘pure’ scientist is that
of an individual motivated solely by the
acquisition of knowledge. However, in real-
ity scientists have human needs, desires,
and motivations just like non-scientists
(Mahoney, 1976). The scientific ecosystem
which researchers inhabit is built and main-
tained by several organisations including
universities, industry stakeholders, fund-
ing bodies, and publishers who also have
interests that diverge from pure knowledge
acquisition. Unfortunately, the present sys-
tem does not adequately account for these
human factors in science, and rewards indi-
viduals who are lucky or willing to ‘play the
game’ (Bakker, van Dijk, & Wicherts, 2012). In
this first section, we examine how the scien-
tific ecosystem not only fails to guard against
the inherent fallibilities of human behaviour,
but actively perpetuates them.

1.1 Pressure to publish

Much of the scientific ecosystem revolves
around a de facto principal commodity: the
published research paper (Young, loannidis,
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& Al-Ubaydli, 2008). A metric called the
h-index is sometimes used to evaluate sci-
entists for hiring, promoting, and fund-
ing decisions (Hirsch, 2005). The h-index
attempts to measure both productivity and
research impact by combining number of
publications and number of citations to
these publications. However, citation rates
are not necessarily indicative of quality or
reliability: articles are also cited when they
are critiqued, or when other researchers
are unable to replicate the original finding.
There was concern at the symposium that
a single-minded drive for productivity is
not conducive to the production of reliable
research findings.

Part of the problem is that the emphasis
on productivity adversely interacts with the
personal career goals of individual scientists.
For example, short-term contracts are com-
mon in academia and it has been suggested
that, ‘the research system may be exploiting
the work of millions of young scientists for a
number of years without being able to offer
continuous, long-term stable investigative
careers to the majority of them’' (loannidis,
Boyack, & Klavans, 2014). Consequently,
there is a climate of fierce competition for
increasingly limited funding (Anderson,
Ronning, Vries, & Martinson, 2007b). This
‘publish or perish’ culture places inappro-
priate demands on a research process that
should ideally be impartial and puts the
integrity of the scientific enterprise in sig-
nificant jeopardy (Fanelli, 2010).

1.2 Great expectations

Why has productivity become such an impor-
tant factor in the scientific ecosystem? At
the symposium, John loannidis, Professor of
Medicine at Stanford University, argued that
science’s great success stories have led to
unrealistic expectations. There is a pressure
for research papers to be coherent, flawless
narratives, but this only masks the scientific
process in a veneer of perfection; the find-
ings of most scientific studies are in reality
highly nuanced (Giner-Sorolla, 2012). The
problem is compounded by an increasing
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trend towards publication of short empirical
reports. This mode of publication might facil-
itate the rapid dissemination of new findings,
but it could also incur the cost of inflated
false-positive rates, reduced integration of
new studies with the existing literature, and
promote an unhealthy focus on seeking eye-
catching ‘newsworthy’ effects over rigorous
theory-driven experimentation (Ledgerwood
& Sherman, 2012). The constant call for new
discoveries, life changing innovations, and a
publishing system that strongly favours posi-
tive results, puts unreasonable pressures on
scientists that may encourage or coerce them
to engage in behaviours that benefit their
careers, but are inconsistent with good scien-
tific practice (Fanelli, 2010).

1.3 Widespread questionable research
practices

On a spectrum of scientific behaviours rang-
ing from intentional misconduct (e.g., falsifi-
cation, fabrication, and plagiarism) to flawless
research conduct, the remaining ‘grey area’
is populated by a variety of questionable
research practices (QRPs). QRPs describe a
range of activities that intentionally or unin-
tentionally distort data in favour of a research-
er's own hypotheses (John et al, 2012;
Simmons et al,, 2011). These include ‘cherry
picking': omitting outcomes, variables, or con-
ditions that do not support the author's own
beliefs (Chan, Hrobjartsson, Haahr, Gotzsche,
Altman, 2004); ‘HARKing: hypothesising
after the results are known to give the more
compelling impression that findings were
predicted a priori(Kerr, 1998); and ‘p-hacking’:
prematurely examining data and exploiting
techniques that may artificially increase the
likelihood of meeting the standard statistical
significance criterion (typically a = .05), for
example, making stop/continue data collec-
tion decisions (Armitage, McPherson, & Rowe,
1969), or engaging in post-hoc exclusion of
outlier values (Bakker & Wicherts, 2014).

It seems clear that the damaged scientific
ecosystem is partly to blame for the wide-
spread engagement in QRPs (Fanelli, 2010;
Bakker et al., 2012). However, they could also
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be an inevitable consequence of biases inher-
ent to human cognition and thus difficult to
overcome. For example, confirmation bias
describes an effect whereby an individual
preferentially seeks, interprets, and remem-
bers information in a way that is consistent
with their pre-existing beliefs (Nickerson,
1998). Although confirmation bias has only
been sparsely investigated in scientific situa-
tions, some evidence indicates that scientists
tend to discount evidence that might discon-
firm their theoretical preferences (Brewer &
Chin, 1994).

It is of great concern that QRPs are not just
confined to a small subsection of the scien-
tific community, but rather widespread and
considered by many to be ‘defensible’ (John
et al., 2012; Martinson, Anderson, de Vries,
2005). When used in a single study, these
QRPs increase the likelihood of making a
false-positive finding (Simmons et al., 2011).
When employed on a large scale, such prac-
tices could have a devastating impact on the
validity of the entire field of scientific inquiry
(Ioannidis, 2005).

1.4 Unwillingness to share data

Even when it is accepted that false-positive
findings are an inevitable by-product of the
research process, much faith is placed in the
notion of science as a ‘self-correcting’ enter-
prise (Merton, 1942). The idea is that spuri-
ous findings will eventually be exposed and
purged whilst accurate findings will prevail.
In order to facilitate self-correction, it is
essential that scientists are open about their
work so that it can be checked and repeated
by their peers. Transparency is often consid-
ered to be a fundamental tenet of scientific
investigation and many scientists subscribe
to the norm of communality, which entails
‘common ownership of scientific results and
methods and the consequent imperative
to share both freely’ (Anderson, Ronning,
De Vries & Martinson 2010; Merton, 1942).
Unfortunately, at the symposium, Dr Jelte
Wicherts (Tilburg University) depicted an
aspect of the scientific ecosystem that con-
trasts vividly with this norm.
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Data sharing is an important aspect of self-
correcting science because it allows scientists
to verify original analyses, conduct novel
analyses, or carry out meta-analyses that
can establish the reliability and magnitude
of reported effects (Sieber, 1991; Tenopir,
Allard, Douglass, Aydinoglu, Wu, Read,
Manoff, & Frame, 2011). Wicherts described
a 2006 paper in which attempts were made
to access the data of 141 articles published
in prominent psychology journals (Wicherts
et al., 2006). Despite guidelines from the
American Psychological Association (APA,
2001: 396) that compelled them to do so,
73% of authors did not share their data (for a
similar finding in the biological sciences see
Vines, Albert, Andrew, Débarre, Bock et al.,
2014). Another concerning finding emerged
when a subset of these papers was examined
in greater detail: unwillingness to share data
was associated with a higher prevalence of
statistical reporting errors, particularly when
those errors favoured an interpretation of
the study’s findings as statistically significant
(Wicherts, Bakker, & Molenaar, 2011).

More generally, Wicherts and colleagues
have found that statistical reporting errors
are commonplace in the psychological litera-
ture (Bakker & Wicherts, 2011). Based on a
reanalysis of 281 articles, the researchers esti-
mated that around 18% of statistical results
in the psychological literature are incorrectly
reported. Similar to the findings outlined
above, the majority of these errors support an
interpretation of the study’s results as statis-
tically significant even though they were not.
This is troubling as it suggests that researcher
errors do not simply add noise to the research
process, they introduce a systematic bias
towards positive findings (Sarewitz, 2012). A
field riddled with suspect statistics, QRPs, and
a concomitant unwillingness to share data, is
in danger of perpetuating falsehoods rather
than establishing truths (loannidis, 2012).

1.5 Bad apples and a rotten barrel

At the symposium, Melissa Anderson,
Professor of Higher Education at the University
of Minnesota, argued that historically
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research governance has largely relied upon
the self-regulation of scientists. This tendency
has been motivated by faith in the scientific
process to recruit individuals who are fit for
the job and to weed out any ‘funny busi-
ness'. Underpinning this is a set of assump-
tions about the integrity and infallibility of
scientists. Firstly, there is an implicit suppo-
sition that scientists are ‘good people’, moti-
vated largely by the pursuit of knowledge.
Scientists are also considered to be highly
trained professionals who have undergone
rigorous examinations and interviews. It is
often assumed that rare cases of misconduct
will be addressed by science’s various mecha-
nisms of self-correction: procedures such as
peer-review, ethics committees, and study
replication are all expected to filter ‘bad sci-
ence’ from the system (Anderson et al., 2010;
Merton, 1942).

Scientists are also subject to various legal
and ethical protocols intended to pro-
mote research integrity. However, a recent
examination of these protocols, presented
during a symposium poster session, sug-
gested that in Europe there is a complex
system of overlapping regulatory bodies
providing guidelines that vary considerably
between countries and institutions (also see
Godecharle, Nemery, & Dierickx, 2013). For
example, there was considerable heteroge-
neity in the definition of ‘misconduct’ and
the proposed mechanisms for dealing with
it. It is hard to see how regulations charac-
terised by such disunity and incoherence can
provide effective oversight of integrity in the
day-to-day workings of science.

It is also noteworthy that regulatory
regimes are largely focused on dealing with
researchers who engage in intentional mis-
conduct. Anderson outlined how regula-
tion is geared towards protecting scientific
integrity from these ‘bad apples’. However,
she also highlighted the critical difference
between ‘misconduct’ and ‘misbehaviour’.
According to US federal law, research mis-
conduct is defined as fabrication, falsifica-
tion, or plagiarism (Office of Science and
Technology Policy, 2000). It must represent
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a ‘significant’ departure from ‘proper prac-
tice'’ and be ‘intentional’. Research misbe-
haviour on the other hand, comprises more
ambiguous activities, such as the QRPs high-
lighted earlier in this article (see Section
1.3). Throughout the symposium there was
a general consensus that the scientific estab-
lishment should not only be concerned with
the ‘bad apples’ that propagate full-blown
research misconduct, but apply greater
focus to the ‘rotten barrel’ that leads sci-
entists to (perhaps unwittingly) engage in
research misbehaviour.

2. Rehabilitating the scientific
ecosystem

Whilst the symposium began by outlining
threats to scientific integrity and possible
causes, a variety of solutions were also pro-
posed, some with fairly broad aims and others
targeting specific issues. Many of the speakers
stated that no single solution would provide
a panacea, and suggested that multiple ini-
tiatives would be required. Several speakers
and delegates proposed that funding should
be invested in an empirical examination of
research practices and potential solutions in
order to ensure their effectiveness. Perhaps it
is time for scientists to turn their microscopes
upon themselves and examine how their own
behaviour, intentional or otherwise, distorts
the scientific process? Other attendees of
the symposium were keen to seize upon the
current momentum for change and begin
repairing the scientific ecosystem as soon as
possible. In practice, many of the solutions
outlined below are already being imple-
mented, but in an incremental and voluntary
fashion. In this section, we evaluate the solu-
tions proposed at the symposium and exam-
ine the idea that, ultimately, rehabilitation of
the scientific ecosystem will require consider-
able cultural change.

2.1 Changing incentives

Section 1.1 commented on how the scientific
ecosystem’s incentive structure is grossly
misaligned with the principles of good sci-
ence. At the symposium Professor loannidis
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proposed an ambitious scheme for apprais-
ing and rewarding research: a new metric
that captures productivity, quality, repro-
ducibility, shareability, and translatability
(PQRST; loannidis & Khoury, 2014). The idea
is to diversify the types of scientific activity
that are rewarded in order to prevent pro-
ductivity becoming scientists’ principal goal.
Practically speaking, it should be reason-
ably straightforward to estimate productiv-
ity using existing measures (for example,
the proportion of registered clinical trials on
ClinicalTrials.gov published two years after
study completion), but the remaining param-
eters would require adding new features to
scientific databases. For example, to calculate
a ‘shareability’ index databases would need
to monitor whether authors have uploaded
their data to a public repository. Given the
conflicting interests that influence the sci-
entific ecosystem, it seems that reaching
agreement on which quality standards are
appropriate to use will be a more consider-
able barrier to change. loannidis hopes that
realigning incentive structures with princi-
ples of good science will reduce the preva-
lence of scientific misbehaviours like QRPs
and unwillingness to share data.

2.2 Scientific integrity training
Changing incentive structures may help to
address intentional engagement in QRPs;
however, it is also plausible that many QRPs
are employed unwittingly simply because
researchers are not fully aware of the extent
to which these practices are problematic.
The issue of integrity training was raised
repeatedly at the symposium, but interest-
ingly these proposals were largely directed
at educating junior scientists. The poster on
European research misconduct regulations,
presented by Godecharle and colleagues,
also reflected this: only Irish guidelines men-
tioned providing training to senior scientists
(see Godecharle et al., 2013).

Some research suggests that the effec-
tiveness of formal ethical training might be
limited in comparison to the influence of
lab culture or mentoring (e.g., Anderson,
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Horn, Risbey, Ronning, DeVries, & Martinson,
2007a). At the symposium, Anderson pro-
posed that principal investigators should
improve awareness of research integrity
amongst junior researchers through Iab-
based discussions, and should seek to engage
students by employing relevant real-life
examples. For instance, mentoring sessions
could utilise role-play in which research-
ers confront ambiguous research scenarios
they might actually find themselves in. This
would constitute a shift away from simply
briefing students on the regulations and
protocols that they are expected to follow as
researchers. Instead it would concentrate on
highlighting the difficulties of conducting
research and show them how to solve prob-
lems in a realistic environment. However,
we note that focusing training efforts solely
on junior scientists may not be sufficient to
address the present threats to scientific integ-
rity whilst engagement in QRPs is widespread
amongst senior scientists (John et al., 2012).

2.3 Preregistration of study protocols

Even if changing incentives and introducing
training schemes are effective in improving
scientific integrity, they may not be sufficient
to eliminate the influence of QRPs that could
arise as a consequence of biases inherent in
human cognition (see Section 1.3). A poten-
tial solution to this problem, preregistration,
was introduced to the symposium by Eric-Jan
Wagenmakers, Professor of Cognitive Science
at the University of Amsterdam. The central
premise of preregistration is that research-
ers specify a methodology, sample size, and
data analysis plan prior to conducting a
study. This preregistration document can be
uploaded to a public repository, such as The
Open Science Framework (OSF) and referred
to in any subsequent paper that reports the
study. A stronger version of preregistration
involves the submission of the preregistra-
tion document to a journal where, assuming
the study is of satisfactory methodological
quality, it will be accepted on the basis of
the preregistration alone, and the journal
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would be committed to publishing the study
regardless of the results.

The anticipated benefits of preregistra-
tion are two-fold. Primarily, it would prevent
researchers from engaging in many QRPs
because they are held to account by their
own preregistration document. For exam-
ple, it would be impossible for a researcher
to engage in ‘cherry picking’, inappropriate
post-hoc outlier exclusion, data ‘peeking’, or
HARKing (see Section 1.3; John et al., 2012),
when the relevant parameters have been spec-
ified prior to data collection. Furthermore,
journal-based preregistration would help to
address publication bias by ensuring that pub-
lication is dependent primarily upon method-
ological quality rather than the nature of the
results (Chambers, 2013). This would help to
reduce the ‘file-drawer’ problem (Rosenthal,
1979) whereby findings that do not achieve
statistical significance are considerably less
likely to be published—a state of affairs that
drives the current publication bias towards
positive findings (Fanelli, 2012) and under-
mines the validity of the academic literature
(loannidis, 2005).

Several members of the symposium audi-
ence pointed out potential problems with
preregistration. For example, it was sug-
gested that there would be nothing stop-
ping a scientist from engaging in QRPs and
then ‘preregistering’ a study that they had
in fact already completed. This is true, coun-
tered Wagenmakers, but in a preregistra-
tion scheme, such practices would clearly
be fraud, and thus only likely to be com-
mitted by a small minority. A more practi-
cal criticism was that preregistration could
increase workload because it involves two
stages of peer review: prior to data collec-
tion to evaluate methodology and after
data collection to evaluate adherence to the
preregistration plan. However, Chambers et
al. (2014) argue that journal-based prereg-
istration could in fact save time. In the cur-
rent publication system it is common for a
manuscript to be submitted and reviewed
at multiple journals, often being rejected
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several times based on either methodologi-
cal problems or because the results are not
deemed ‘interesting’. However, in a pre-
registration scheme, studies are primarily
judged on their methodological quality,
which is established prior to the study being
run. Thus, a more thorough reviewer-author
interaction at the pre-data collection stage
will ultimately reduce the likelihood that
the research has to undergo several rounds
of submission and review at multiple jour-
nals. A system that scrutinises research
protocols and methods prior to commenc-
ing data collection could also be helpful for
authors. Under the current system, irrepa-
rable methodological issues may only come
to light when authors have already invested
time and money in running the study.
Whereas, in the new system authors would
receive feedback about their proposals
before commencing the study, allowing for
improvements to be made. Overall then, the
time-cost for authors, reviewers and editors
could be negligible or even an improvement
compared to the present system.

Other delegates objected on the grounds
that preregistration may shackle science by
outlawing creative post-hoc explorations of
data or restricting observational research
(see also Scott, 2013). But Wagenmakers
argued that preregistered studies could
still include post-hoc exploratory analyses
that the authors and reviewers believe to
be appropriate. By using preregistration, a
clear distinction would be made between
confirmatory analyses specified in the
preregistration, and exploratory analyses
inspired by the data (see Wagenmakers,
Wetzels, Borsboom, van der Maas, & Kievit,
2012). Readers could then treat author
claims with the appropriate degree of skep-
ticism depending on the status of their
analysis. Furthermore, fraudulent preregis-
tration could backfire, as editors are likely to
require revisions to the proposed protocol
(Chambers, Feredoes, Muthukumaraswamy,
& Etchells, 2014). Thus, even relatively minor
changes to the experimental procedure
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would be impossible if the study had already
been completed.

2.4 Transparency through data sharing
Preregistration may address integrity issues
prior to and during data collection, but the
studies described earlier by Jelte Wicherts
and colleagues suggest a widespread unwill-
ingness to share data with fellow scientists
after findings have been published (Wicherts
et al., 2006). Wicherts believes that his work
describes a culture of secrecy in which mis-
conduct can flourish, and he has built a
strong case for obligatory data sharing in the
scientific community (Wicherts, 2011).

However, there are practical and ethical
issues to overcome. Martin Bobrow (2013)
for example, agrees that there is, an ethi-
cal imperative..to maximize the value of
research data’ but also acknowledges the
need to be cautious, as there is a risk of indi-
viduals being identified in sensitive datasets.
Bobrow suggests that as more research is
shared it is important to assess how these
data are being used, to examine the risks,
and to devise appropriate governance that
balances privacy with public benefit.

In the neuroimaging community, concerns
have been raised about the various technical
issues involved in sharing large and complex
brain imaging data (Nature Neuroscience
Editorial, 2000). A more general issue that
has arisen from this debate is that many
researchers fear being ‘scooped’ if discover-
ies are made using their dataset before they
have been able to finish analysing the data
themselves. These concerns appear to be
an unfortunate consequence of a scientific
ecosystem that incentivises productivity in
terms of publications and fails to account for
other activities that contribute to credible
scientific inquiry (see Section 1). The PQRST
metric proposed by loannidis and Khoury
(2014; see Section 2.1) explicitly incorporates
‘shareability’ as an index of scientific quality.

Generally speaking, professional guidelines,
for example those provided by the American
Psychological Association, do not appear
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to offer sufficient compulsion for authors
to share their data. At present, data sharing
policies vary substantially across journals
(Alsheikh-Ali, Qureshi, Al-Mallah, & loannidis,
2011) and Wicherts recommends that journals
require from authors to upload their data to
a public repository (e.g., The OSF) along with
a relevant codebook so that other research-
ers can navigate the dataset. Although this
may generate additional work for the original
author in terms of preparing the dataset for
other users, Wicherts argues that data sharing
in this manner is an essential component of
transparent scientific practice.

2.5 Cultural change

Some of the solutions outlined above have
either been met with resistance, or at least
not fully embraced by the scientific commu-
nity (e.g., Scott, 2013). There is some evidence
suggesting that scientists are generally open
to change, but wary of new schemes and reg-
ulations that might impose rigidity on their
practice (Fuchs, Jenny & Fiedler, 2012). A
more comprehensive solution to the current
problems faced by science would comprise a
wholesale rehabilitation of scientific culture,
in tandem with some of the more practical
initiatives proposed above.

Individual scientists rarely work in isola-
tion, typically operating in teams, situated
within departments and institutions, and
interacting with colleagues in their discipli-
nary field through publications, attendance
at conferences, and informal communica-
tions both public (e.g., social media) and
private (e.g., e-mail). These different com-
munities each have a cultural identity and
establish proximal norms that influence
the behaviour of community members. In
order for any of the previously proposed
procedures or regulations to be effective, the
culture of science may need to shift so that
individuals are supported by their colleagues
to make the right decisions.

In a culture where scientists have to ‘play
the game’ to survive (Bakker et al., 2012), it
is hard for an individual scientist to priori-
tise the integrity of their research. Martinson
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et al. (2005) found a significant association
between self-reported scientific misbehav-
iour and perceived inequities in the funding
allocation process. These findings suggest
that when people feel ‘wronged’ or are work-
ing in a climate they believe to be rife with
competition and power games, they are more
likely to prioritise the success of their own
careers over behaviours that support credible
scientific inquiry. Anderson also described a
study (unpublished data) in which 7,000
mid-career and early-career researchers
were asked whether they had ever engaged
in either research misconduct or misbe-
haviour. A very modest number reported
misconduct, but many reported misbehav-
iour. Researchers were also asked to report
what they thought about other researchers’
engagement in these practices. Interestingly,
a positive correlation was identified between
those who self-reported increased levels of
research misconduct or misbehaviour, and
the extent to which they perceived others
were engaged in such practices. This depicts
a scientific ecosystem in which individuals
are more likely to engage in misconduct and
misbehaviour if they think others around
them are too.

At the symposium, Anderson proposed
a number of initiatives that sought to chal-
lenge the current scientific culture. There
is some evidence to suggest that signing an
institutional research integrity oath or hon-
our code, and receiving reminders of these
agreements, could reduce research misbe-
haviour. In an experiment with students at
MIT and Yale, Mazar, Amir and Ariely (2008)
found that simply printing the statement
‘[ understand that this..falls under [MIT's/
Yale's] honor system’ on test papers signifi-
cantly reduced cheating regardless of the
incentive offered and despite no real honor
code existing at these institutions. Whilst
this is a promising finding, the idea remains
to be investigated in research settings involv-
ing real research misconduct or misbehav-
iour, where the stakes are higher, and the
factors influencing engagement in QRPs are
diverse. Perhaps journal submission portals
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or PhD vivas could require researchers to sign
a research integrity code when submitting a
manuscript or thesis? It would also be impor-
tant to consider how an honor code could be
applied to complex ‘grey area’ behaviours,
since the usual mechanisms are clearly insuf-
ficient for regulating research misbehaviour.

3. Conclusion

Whilst the issues faced by the scientific dis-
ciplines are alarming, it is exciting to be part
of a community that is reflecting critically
on an unsustainable status quo. Many of the
current issues have been raised previously
but change has not been forthcoming. The
main differences this time are an increased
awareness about these issues within the sci-
entific community and widespread access
to technological apparatus that can support
inventive and accessible solutions.

However these are also unsettling times
for young researchers finding their feet in a
scientific system that appears to have drifted
far from its principal goal of truth-seeking.
In his book Advice For A Young Investigator,
the neuroscientist Ramén y Cajal suggests
that ‘two emotions must be unusually strong
in the great scientific scholar: a devotion to
truth and a passion for reputation’ (Ramén
y Cajal, 1897/1999: 40). Yet in a scientific
ecosystem that rewards researchers for their
productivity more than for their methodo-
logical rigor, a young investigator who is fully
devoted to the truth cannot afford to be pas-
sionate about their reputation, and a young
investigator passionate about their reputa-
tion cannot afford to be fully devoted to the
truth. It is time to rehabilitate the scientific
ecosystem, and the first step is to acknowl-
edge that scientists are only human.
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Improving functional magnetic resonance

imaging reproducibility

Cyril Pernet'” and Jean-Baptiste Poline®”

Abstract

harder to reproduce.

establish itself as a true data science.

Background: The ability to replicate an entire experiment is crucial to the scientific method. With the development
of more and more complex paradigms, and the variety of analysis techniques available, fMRI studies are becoming

Results: In this article, we aim to provide practical advice to fMRI researchers not versed in computing, in order to
make studies more reproducible. All of these steps require researchers to move towards a more open science, in
which all aspects of the experimental method are documented and shared.

Conclusion: Only by sharing experiments, data, metadata, derived data and analysis workflows will neuroimaging

Keywords: Functional MRI, Reproducibility, Scripts, Workflows, Code, Open science

“Experience has shown the advantage of occasionally
rediscussing statistical conclusions, by starting from
the same documents as their author. I have begun to
think that no one ought to publish biometric results,
without lodging a well arranged and well bound
manuscript copy of all his data, in some place where
it should be accessible, under reasonable restrictions,
to those who desire to verify his work.” Galton 1901 [1]

Introduction

Because current research is based on previous published
studies, being able to reproduce an experiment and rep-
licate a result is paramount to scientific progress. The
extent to which results agree when performed by differ-
ent researchers defines this tenet of the scientific
method [2,3]. Recently, a number of authors have ques-
tioned the validity of many findings in epidemiology or
in neuroscience [4,5]. Results can be found by chance
(winner’s curse effect), more often in poorly powered
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studies [6], or be declared significant after too many varia-
tions of the analysis procedure [7,8] without controlling
appropriately for the overall risk of error (p-hacking effect
[6,9]). Additionally, errors in code or in data manipulation
are easy to make [10]: it is in general difficult to check for
the correctness of neuroimaging analyses. Reproduction is
one way to address these issues, given that the probability
of a research finding being true increases with the number
of reproductions (see Figure two in [4]).

If the reliability of a large proportion of functional
magnetic resonance imaging (fMRI) results is question-
able, this has serious consequences for our community.
Mostly, this means that we are building future work on
fragile ground. Therefore we need to ensure the validity
of previous results. It is very possible, and some argue
likely, that we - as a community - are wasting a large
amount of our resources by producing poorly replicable
results. We can, however, address the current situation
on several fronts. First, at the statistical analysis level,
one proposed solution is to be more disciplined and use
pre-registration of hypotheses and methods [11]. Provid-
ing information about planned analyses and hypotheses
being tested is crucial, as it determines the statistical val-
idity of a result, and therefore the likelihood that it will
be replicated. This would bring us closer to clinical trial
procedures, leading to much more credible results. It
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does not remove the possibility of analyzing data in an ex-
ploratory manner, but in that case p-values should not be
attached to the results. Pre-registration is an effective solu-
tion to address the growing concern about poor reprodu-
cibility, as well as the ‘file drawer’ issue [9,12]. Second, we
propose that better procedures and programming tools
can improve the current situation greatly. We specifically
address this question, because many of the researchers
using fMRI have limited programming skills.

Although we aim for reproduction of results with
other data and independent analysis methods, the first
step is to ensure that results can be replicated within la-
boratories. This seems an easy task, but it is in fact com-
mon that results cannot be replicated after, say, a year or
two, when the student or post-doc responsible for the
analyses and the data management has left. Increasing
our capacity to replicate the data analysis workflow has
another crucial aspect: this will allow us to better docu-
ment our work, and therefore communicate and share it
much more easily. It is crucial that we remember that
resources are limited, and part of our work is to make it
easy for others to check and build upon our findings.

In computer science and related communities, a number
of informatics tools and software are available (databases,
control version system, virtual machines, etc.) to handle
data and code, check results and ensure reproducibility.
Neuroscientists working with functional MRI are, how-
ever, largely from other communities such as biology,
medicine and psychology. Because of the differences in
training and the field of research, such informatics tools
are not necessarily sufficient, and are certainly not fully ac-
cessible to or mastered by all researchers. In this review,
we address specifically the community of neuroscientists
with little programming experience, and point to a num-
ber of tools and practices that can be used today by any-
one willing to improve his or her research practices, with
a view to better reproducibility. We also recommend ob-
serving how other communities are improving their repro-
ducibility. For instance, B Marwick [13] gives an excellent
summary of these issues and some solutions for the social
sciences, and many of his recommendations may be
shared between fields. Improving the capacity of other re-
searchers to reproduce one’s results involves some degree
of sharing, through journals, repositories or dedicated
websites (Annex 1). These practices, if followed, should be
sufficient to allow any researcher to replicate a published
fMRI experiment. Here we define replication as the cap-
acity of a colleague to re-execute the analyses on the same
dataset [14], but note that this definition varies in the lit-
erature [15]. In step 2 below (‘Improving scripts and turn-
ing them into workflows’), we expand on good practice for
writing and sharing code. Although this can seem daunt-
ing for people who do not often write code, our goal is to
give some tips to improve everyone’s analysis scripts.
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Reproducible neuroimaging in 5 steps

We define reproducibility as the ability of an entire experi-
ment to be reproduced [16], from data acquisition to re-
sults. In some fields, such as computational neuroscience,
reproducibility can be readily dissociated from replicabil-
ity, which is the capacity for exact analytical reproduction
of the analysis pipeline, possibly using the same data
[14,15]. For fMR], as for other fields, reproduction is more
of a continuum: analytic reproduction (the replication
case), direct reproduction (reproducing a result using the
same conditions, materials and procedures as in the ori-
ginal publication, but with other subjects), systematic
reproduction (trying to obtain the same finding by using
many different experimental conditions), and conceptual
reproduction (reproducing the existence of a concept
using different paradigms). The question we address here
is to what extent we can share protocols, data, workflows
and analysis code to make fMRI studies easier to replicate
and directly reproduce.

Sharing experimental protocols

Every task-based fMRI study depends on an experimental
procedure in which subjects are instructed to passively
watch, listen, feel, taste, or smell, or to actively engage in a
task. In all cases, stimuli are presented via a computer pro-
gram that synchronizes with the MRI scanner. Although
such procedures are always described in published articles,
some details about the order of stimulus presentation,
stimulus onset times or stimulus sizes, for example, can be
missing. The issue is that such details can determine
whether an effect is observed or not. It is therefore para-
mount to be able to replicate the experimental setup if
one wants to reproduce a study. Sharing computer pro-
grams (and stimuli) is easily achievable: when publishing
an article, the computer program can be made available ei-
ther as supplementary material or, more usefully, through
a repository. Repositories are large data storage servers
with a website front-end that can be used to upload and
share data publicly (e.g. Dryad [17], FigShare [18], Open-
Science framework [19], or Zenodo [20]). A license allow-
ing modification and resharing should be attached to
these data to maximize the speed of research discoveries.

Document, manage and save data analysis batch scripts
and workflows

Making analyses reproducible with limited programming skills
Functional MRI analyses are complex, involving many pre-
processing steps as well as a multitude of possible statistical
analyses. Even if the most important steps are reported
using precise guidelines [21], there are too many parame-
ters involved in the data analysis process to be able to pro-
vide a full description in any article. Carp [7] examined a
simple event-related design using common neuroimaging
tools, but varying the available settings (see also [8]). This
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led to 6,912 unique analysis pipelines, and revealed that
some analysis decisions contributed to variability in activa-
tion strength, location and extent, and ultimately to inflated
false positive rates [4]. In the face of such variability, some
have argued that ‘anything less than release of actual source
code is an indefensible approach for any scientific results
that depend on computation, because not releasing such
code raises needless, and needlessly confusing, roadblocks
to reproducibility’ [22].

In contrast with data analysts or software developers,
many neuroimagers do not code their analysis from
scratch - instead they rely on existing software and often
reuse code gathered from others in the laboratory or on
the web. Pressing buttons in a graphical user interface is
not something that can be replicated, unless inputs and
processing steps are saved in log files. To ensure reprodu-
cibility (even for oneself in a few months’ time) one needs
to set up an automatic workflow. Informatics and bioinfor-
matics researchers have been discussing issues of code re-
producibility for many years [23,24], and lessons can be
learnt from their experience. Sandve et al. [24] have a few
simple recommendations. First, keep track of every step,
from data collection to results, and whenever possible
keep track with electronic records. Most neuroimaging
software has a so-called batch mode (SPM [25,26]) or
pipeline engine (Nipype [27,28]), or is made up of scripts
(AFNTI [29,30], FSL [31,32]), and saving these is the best
way to ensure that one can replicate the analysis. At each
step, record electronically, and if possible automatically,
what was done with what software (and its version). Sec-
ond, minimize, and if possible eliminate, manual editing.
For instance, if one needs to convert between file formats,
this is better done automatically with a script, and this
script should be saved. Third, for analyses that involve a
random number generator, save the seed or state of the
system, so that the exact same result can be obtained. As
for the computer program used to run the experiment
(step 1), the batch and scripts can be made available as
supplementary material in a journal, and/or shared in re-
positories. If one ends up with a fully functional script that
includes a new type of analysis, this can itself be registered
as a tool on dedicated websites such as the Neurolmaging
Tool and Resources Clearinghouse (NITRC [33]). Sharing
the analysis batch and scripts is the only way to ensure re-
producibility by allowing anyone to (i) check for potential
errors that ‘creep in’ to any analyses [10]; (ii) reuse them
on new data, possibly changing a few parameters to suit
changes in scanning protocol - similar results should be
observed if the effects were true [14] - and (iii) base new
analysis techniques or further research on verifiable code.

Improving scripts and turning them into workflows
Although these recommendations are, we hope, useful,
they are not generally sufficient. Analysis code depends on
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software, operating systems, and libraries that are regularly
updated (see, e.g. [34] for an effect on imaging results).
When the code is rerun, these changes should be tracked,
and results attached to a specific version of the code and
its environment. The only complete solution is to set up
virtual machine or equivalent. For neuroimaging, the
NeuroDebian project [35] integrates relevant software into
the Debian operating system, where all software is unam-
biguously versioned and seamlessly available from a pack-
age repository. This makes it possible to define the whole
environment and reconstruct it at any later time using
snapshots of the Debian archive [36]. While such a solu-
tion is the most complete, investing in good revision con-
trol software is a first step that goes a long way in
handling code (Wikipedia lists 36 types of such software
[37]). We argue here that this investment is a necessity for
reproducible science.

Although a simple text editor or word processing
document could be used to precisely describe each ana-
lysis step, only an executable script and information on
the associated software environment can give one a rea-
sonable chance of reproducing an entire experiment.
This implies that much more should be done to teach
programming to students or researchers who need to
work with neuroimaging data. Barriers to code sharing
are not as great as for data, but they do exist. Re-
searchers are often concerned that their code is too
poor, and that there might be some errors. These, and
the fear of being ‘scooped; are some of the main reasons
scientists give for not sharing code with others [38]. Yet,
as Barnes [39] puts it, “software in all trades is written to
be good enough for the job intended. So if your code is
good enough to do the job, then it is good enough to re-
lease”. A few simple rules can be applied to improve
scripts [23]. First, make your code understandable to
others (and yourself). Add comments to scripts, provid-
ing information not just about what is computed, but
also reflecting what hypothesis is being tested, or ques-
tion answered, by that specific piece of code [24]. Second,
version control everything. Version control systems
(VCSs) store and back up every previous version of the
code, allowing one to ‘roll back’ to an older version of the
code when things go wrong. Two of the most popular
VCSs are Git [40] (which we recommend) and Subversion
[41]. ‘Social coding’ platforms, such as GitHub [42] or
Bitbucket [43], are also useful sharing and collaboration
tools. Third, test your code effectively, to assure yourself
and others that it does what it is supposed to. The soft-
ware industry tells us that “untested code is broken code”,
but scientists lack incentives to invest time in this. For ex-
ample, if you coded some statistical tests to be run on
multiple voxels, compare the routine in one voxel against
a prototype solution. Learning how to test and document
one’s code is a crucial skill to reduce bugs and ensure safe
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reuse of code, an aspect that is not sufficiently emphasized
and taught in curricula. In fact, the experience of the au-
thors is that it is hardly ever mentioned.

Neuroimagers can also take advantage of a few easy-
to-use tools to create complex scripts and make a work-
flow (a workflow consists of a repeatable pattern of
activities that transform data and can be depicted as a
sequence of operations, declared as work of a person or
group (adapted from [44]). For Matlab-based analyses,
we can recommend using Matlab-specific formatting® in
the code, and a workflow engine such as the Pipeline
System for Octave and Matlab (PSOM [45,46]) or the
Automatic Analysis pipeline (AA [47,48]). For Python-
based analyses, we recommend the IPython notebook
([49] now the Jupyter project) to sketch the analysis and
explore results, along with the workflows provided in
Nipype [27,28]. Packages such as SPM [25,26] have
batch systems that create scripts of the whole analysis
workflow, which should be learned for efficiency, repro-
ducibility and provenance tracking. It is also possible to
create entire workflows using general (e.g. Taverna [50],
Kepler [51]) or dedicated libraries (LONI pipeline [52])
and thereby obtain analysis provenance information.
Using these pipelines, one can create (via a graphical
interface or a script) a workflow of the different steps in-
volved in fMRI data processing, specifying parameters
needed at each step, and save the workflow. Dedicated
libraries or scripts can be called, and the impact of chan-
ging a parameter value in a specific implementation of a
step can be studied. Most of these pipeline systems have
ways to help distribute the processing using computers’
multicore architectures, or job-scheduling systems in-
stalled on clusters, thereby reducing computation time.
In general, these tools require some programming and
software expertise (local installation and configuration
issues seem to be largely underestimated issues) beyond
what fMRI researchers can usually do (whereas PSOM,
Nipype and using the SPM batch system are ‘easy’).
These more complex workflow or pipeline solutions can,
however, ease replication of the analysis by others: see
[53] for an example using the LONI pipeline.

Organize and share data and metadata

Besides replicating an analysis (running exactly the same
code on the same data), sharing data provides guarantees
of reproducibility by (i) allowing a comparison with
newly collected data (are the patterns observed in the
new dataset the same, independently of statistical signifi-
cance?), (ii) allowing alternative analyses to be tested on
the same data, and (iii) aggregating them with other data
for meta-analyses [54]. Many funders now request that
data are made available, and researchers must be pre-
pared to do this and to identify where the data will be
archived. When the data have obvious potential for reuse

Page 4 of 8

(e.g. [55]) or pose special challenges (e.g. [56]), their
publication in journals such as Data in Brief, Frontiers
in Neuroscience, F1000 Research, GigaScience, Journal of
Open Psychology Data, or Scientific Data allow the crea-
tors to be acknowledged by citation. In any case, data
can simply be put in a repository such as NITRC [33] or
Open-fMRI [57] (task-based fMRI [58]). As of March
2015, OpenfMRI hosts 33 full datasets, and a more
complete format describing the data is being developed.
Previously, the major project that supported sharing of
full fMRI datasets was the fMRI Data Center [59,60]. It
currently has 107 datasets available on request, but has
not accepted submission of additional datasets since
2007. The researcher must also be aware of the con-
straints involved in sharing MRI data. It is of course es-
sential that consent forms indicate clearly that the data
will be de-identified and shared anonymously, and it is
the responsibility of the principal investigator to ensure
proper de-identification [61], that is, not only removing
any personal information from the image headers, but
also removing facial (and possibly dental and ear) infor-
mation from the T1-weighted image. Fortunately, per-
sonal information is removed automatically by most
fMRI packages when converting from DICOM to NIfTI file
format. Removing facial information can be trickier, but
automated tools exist for this too (SPM [25,26], MBRIN
defacer [62,63], Open fMRI face removal Python script®).
Another important issue to consider when sharing data
is the metadata (information describing the data). Data re-
use is only practical and efficient when data, metadata,
and information about the process of generating the data
are all provided [64]. Ideally, we would like all of the infor-
mation about how the data came to existence (why and
how) to be provided. The World Wide Web Consortium
Provenance Group [65] defines information ‘provenance’
as the sum of all of the processes, people (institutions or
agents), and documents (data included) that were involved
in generating or otherwise influencing or delivering a
piece of information. For fMRI data, this means that raw
data would need to be available, along with (i) initial pro-
ject information and hypotheses leading to the acquired
data, including scientific background as well as people and
funders involved; (ii) experimental protocol and acquisi-
tion details; and (iii) other subject information, such as
demographics and behavioral or clinical assessments.
There are currently no tools to do this metatagging, but
we recommend checking with the database that will host
the data and using their format from the start (that is,
store data on your computer or server using the same
structure). Functional MRI can have a complex data
structure, and reorganizing the data post-hoc can be
time-consuming (several hours for posting on Open-
fMR], if the reorganization is done manually [66]). In
the future, efforts spearheaded by the International
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Neuroinformatics Coordinating Facility (INCF [67])
data sharing task force (INCF-Nidash [68]) may provide
a solution, with the development of the Neuro-Imaging
Data Model (NIDM [69]), as well as some recommen-
dations on the directory structure and metadata to be
attached to the data. Some initial work already permits
meta-information to be attached directly to SPM
[25,26], FSL [31,32], and (soon) AFNI [29,30] fMRI data
analysis results.

Make derived data available

Along with the raw data and the analysis batch and
scripts, sharing derived data also increases reproducibil-
ity by allowing researchers to compare their results
directly. Three types of derived data can be identified:
intermediate derived data (from the data analysis
workflow), primary derived data (results) and second-
ary derived data (summary measurements).

Providing intermediate derived data from the analysis
workflow, such as the averaged echo-planar image
(mean EPI) or statistical mask, makes it possible to judge
whether an analysis provides reasonable-looking data,
and what the residual brain coverage is after realign-
ment, normalization and subject overlay. Intermediate
derived data may not always be directly essential to re-
producibility, but can improve the confidence in the data
at hand and/or point to their limitations. More import-
ant for reproducibility is the sharing of primary derived
data. Currently, fMRI studies only report significant
results (regions that survive the statistical threshold),
because one cannot list all regions or voxels tested. Yet
results are more often reproduced when reported at a
less conservative significance threshold (p-value) than is
often used in our community [70]. The best way to val-
idate that an experiment has been reproduced is by
comparing effect sizes, independently of the significance
level. Comparing peak coordinates of significant results
can be useful, but is limited [66]. In contrast, providing
statistical or parameter maps allows others to judge the
significance and sparsity of activation clusters [71]. Statis-
tical maps can be shared via NeuroVault [72,73]. Neuro-
Vault allows the visualization and exploration of raw
statistical maps and is thus a good way look not only at ef-
fect sizes, but also at the precise location of effects (rather
than the crude cluster peak coordinate). Along with the
statistical maps, some information about provenance cur-
rently has to be entered manually (taking 10 to 15 mi-
nutes). Again, this manual editing will soon be facilitated
by the adoption of the NIDM [69]. Finally, as for statistical
maps, secondary derived data should be shared - most
likely as supplementary material data sheets. In a region of
interest (ROI) analysis, for instance, the mean parameter
values extracted across voxels are assembled into a matrix
to compute statistics. This data matrix should be saved
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and distributed so that effect sizes can be compared across
studies. Providing scatter plots along with the data of any
zero-order, partial, or part correlations between brain ac-
tivity or structure and behavioral measures also allows one
to judge of the robustness of the results [74].

Publish

One aspect to consider when sharing data is to make them
available online before publication, so that permanent links
can be included in the article at the time of publication.
We also recommend stating how you want data and code
to be credited by using machine-readable licenses. Easy-to-
implement licenses, many of which offer the advantage
of being machine-readable, are offered by the Creative
Commons organization [75] and Open Data Commons [76].

Discussion

Researchers are much more likely to be able to replicate
experiments and reproduce results if material and proce-
dures are shared, from the planning of an experiment to
the fMRI result maps. This is also crucial if the global ef-
ficiency of our research field is to improve. To be able to
do this, the single most important advice to consider
would probably be to plan ahead, as lack of planning
often prevents sharing®. Informed consent and ethics
should be compliant with data sharing. When previous
data are available, statistical power should be computed,
sample size chosen accordingly and reported. Data,
scripts and maps should be organized and written with
the intention to share and allow reuse, and they should
have licenses allowing redistribution.

To increase fMRI reproducibility, neuroscientists need
to be trained, and to train others, to plan, document and
code in a much more systematic manner than is currently
done. Neuroimaging is a computational data science, and
most biologists, medical doctors and psychologists lack
appropriate programming, software and data science
training. In that respect, sharing work has an additional
educational value. By studying the code used by others, in
order to replicate their results, one also learns what prac-
tices are useful when sharing. Piwowar et al. [77] showed
that sharing data and code increases the trust and interest
in papers, and citation of them. This also makes new col-
laborations possible more easily. Openness improves both
the code used by scientists and the ability of the public to
engage with their work [39]. Putting the code associated
with a paper in a repository is likely to have as many bene-
fits as sharing data or publications. For instance, the prac-
tice of self-archiving can increase citation impact by a
dramatic 50 to 250% [78]. Data and code sharing can also
be viewed as a more ethical and efficient use of public
funding (as data acquired by public funds should be avail-
able to the scientific community at large), as well as a
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much more efficient way of conducting science, by in-
creasing the reuse of research products.

Conclusion

By adopting a new set of practices and by increasing the
computational expertise of fMRI researchers, the reprodu-
cibility and validity of the field’s results will improve. This
calls for a much more open scientific attitude in fMRI, to-
gether with increased responsibility. This will advance our
field more rapidly and yield a higher return on funding in-
vestment. Making neuroimaging reproducible will not
make studies better; it will make scientific conclusions
more verifiable, by accumulating evidence through replica-
tion, and ultimately make those conclusions more valid
and research more efficient. Two of the main obstacles on
this road are the lack of programming expertise in many
neuroscience or clinical research laboratories, and the ab-
sence of widespread acknowledgement that neuroimaging
is (also) a computational science.

Annex 1 - list of websites mentioned in the article
that can be used for sharing

Bitbucket (https://bitbucket.org/) is “a web-based hosting
service for projects that use either the Mercurial or Git re-
vision control system” and allows managing and sharing
code.

Dryad (http://datadryad.org/) “is a curated resource
that makes the data underlying scientific publications
discoverable, freely reusable, and citable” under a Cre-
ative Commons license. It is a nonprofit membership
organization from an initiative among a group of lead-
ing journals and scientific societies in evolutionary biol-
ogy and ecology. This repository now hosts any kind of
biological data.

FigShare (http://figshare.com/) is a repository that
“allows researchers to publish all of their data in a cit-
able, searchable and sharable manner” under a Creative
Commons license. It is supported by Digital Science,
part of Macmillan Publishers Limited. This repository
now hosts any kind of data.

GitHub (https://github.com/) is “a web-based Git re-
pository hosting service” and allows managing and shar-
ing code.

Kepler (https://kepler-project.org/) is a scientific work-
flow application “designed to help scientists, analysts, and
computer programmers create, execute, and share models
and analyses across a broad range of scientific and engin-
eering disciplines”.

LONI pipeline (http://pipeline.bmap.ucla.edu/) is an
application to “create workflows that take advantage of
all the tools available in neuroimaging, genomics [and]
bioinformatics”.

NeuroDebian (http://neuro.debian.net/) integrates
neuroimaging and other related neuroscientific and
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computational software into Debian (Linux). It includes a
repository of over 60 software and data packages. Neuro-
Debian also provides a virtual machine, simplifying de-
ployment within any existing Linux, OS X or Windows
environment.

Neurolmaging Tool and Resources Clearinghouse
(http://www.nitrc.org/), is a web resource that “facilitates
finding and comparing neuroimaging resources for func-
tional and structural neuroimaging analyses”. It is cur-
rently funded by the NIH Blueprint for Neuroscience
Research, National Institute of Biomedical Imaging and
Bioengineering, National Institute of Drug Addiction,
National Institute of Mental Health, and National Institute
of Neurological Disorders and Stroke.

NeuroVault (http://neurovault.org/) is a “public reposi-
tory of unthresholded brain activation maps” under a data
common license. It is managed by Krzysztof Gorgolewski,
and supported by INCF and the Max Planck Society.

Open fMRI (https://openfmri.org/) is “a project dedi-
cated to the free and open sharing of functional mag-
netic resonance imaging (fMRI) datasets, including raw
data” under an open data common license. It is managed
by Russ Poldrack and funded by a grant from the National
Science Foundation.

OpenScience framework (https://osf.io/) is a project
management system for an “entire research lifecycle:
planning, execution, reporting, archiving, and discovery”.
It supports local archiving, but also links with other re-
positories. Multiple options for licensing are available.
It is supported by the Center for Open Science.

Taverna (http://www.taverna.org.uk/) is a “domain-in-
dependent workflow management system - a suite of
tools used to design and execute scientific workflows”.

Zenodo (http://zenodo.org/) is a repository “that en-
ables researchers, scientists, EU projects and institutions
to share and showcase multidisciplinary research re-
sults”, with a choice of open source licenses. It was
launched within an EU funded project and is supported
by the European Organization for Nuclear Research
(CERN).

Endnotes
*Matlab Publishing Markup refers to specific keys such
as %% or _ _ which allows not only inserting comments

into your Matlab code, but also format it for then publish
the code automatically into an executable and readable for-
mat, see http://uk.mathworks.com/help/matlab/matlab_-
prog/marking-up-matlab-comments-for-publishing.html.

>When uploading data to OpenfMRI you need to en-
sure the structural data are defaced appropriately —
the website also offers to use their own defacing tool,
see https://github.com/poldrack/openfmri/tree/master/
pipeline/facemask.

“Thanks to Dorothy Bishop for pointing to this.
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How likely are published findings in the functional neuroimaging literature to be false?
According to a recent mathematical model, the potential for false positives increases with
the flexibility of analysis methods. Functional MRI (fMRI) experiments can be analyzed
using a large number of commonly used tools, with little consensus on how, when, or
whether to apply each one. This situation may lead to substantial variability in analysis out-
comes. Thus, the present study sought to estimate the flexibility of neuroimaging analysis
by submitting a single event-related fMRI experiment to a large number of unique analysis
procedures. Ten analysis steps for which multiple strategies appear in the literature were
identified, and two to four strategies were enumerated for each step. Considering all pos-
sible combinations of these strategies yielded 6,912 unique analysis pipelines. Activation
maps from each pipeline were corrected for multiple comparisons using five thresholding
approaches, yielding 34,560 significance maps. While some outcomes were relatively con-
sistent across pipelines, others showed substantial methods-related variability in activation
strength, location, and extent. Some analysis decisions contributed to this variability more
than others, and different decisions were associated with distinct patterns of variability
across the brain. Qualitative outcomes also varied with analysis parameters: many con-
trasts yielded significant activation under some pipelines but not others. Altogether, these
results reveal considerable flexibility in the analysis of fMRI experiments. This observation,
when combined with mathematical simulations linking analytic flexibility with elevated false
positive rates, suggests that false positive results may be more prevalent than expected
in the literature. This risk of inflated false positive rates may be mitigated by constraining

the flexibility of analytic choices or by abstaining from selective analysis reporting.

Keywords: fMRI, data analysis, analysis flexibility, selective reporting, false positive results

INTRODUCTION

How common are false positive results in the functional neu-
roimaging literature? Among functional MRI (fMRI) studies that
apply statistical correction for multiple comparisons, most use a
nominal false positive rate of 5%. However, Wager et al. (2009) esti-
mate that between 10 and 40% of fMRI activation results are false
positives. Furthermore, recent empirical (Ioannidis, 2005a) and
mathematical modeling studies (Ioannidis, 2005b) argue that the
true incidence of false positives may far exceed the nominal rate in
the broader scientific literature. Indeed, under certain conditions,
research findings are more likely to be false than true (Ioannidis,
2005b).

As described in a mathematical modeling study by Ioannidis
(2005b), analytic flexibility is a key risk factor for inflated rates of
false positive results when combined with selective reporting of
favorable analysis methods. Analytic flexibility is defined here as
the range of analysis outcomes across different acceptable analysis
methods. Thus, if many analysis pipelines are considered valid,
and if different methods yield different results, then analysis flex-
ibility is high. When analytic flexibility is high, investigators may
elect to report methods that yield favorable outcomes and omit
methods that yield null results. This practice is known as selective
analysis reporting. For example, a researcher may notice that

an experiment yields positive results when analyzed using head
motion regression, but not when analyzed without using head
motion regression. The researcher may then choose to describe
the former analysis but not the latter when reporting the results
of the experiment. Indeed, investigators in some research fields
appear to pursue this strategy. Reviews of randomized clinical tri-
als show that many studies change outcome measures and other
methodological parameters between study design and publication.
Critically, these changes tend to make results appear more signif-
icant than they would have been under the original analysis plan
(Chan et al., 2004a,b; Dwan et al., 2008; Mathieu et al., 2009).

A recent survey of fMRI methods shows that methodological
decisions are highly variable from study to study (Carp, 2012).
Across 241 published fMRI studies, authors reported using 32
unique software packages (e.g., SPM 2, FSL 3.3) and 207 unique
combinations of design and analysis steps (e.g., spatial normal-
ization, head motion regression). Parameter settings also showed
considerable variability within each analysis step. For example,
spatial smoothing kernels ranged from 3 to 12mm full width
at half maximum, and high-pass filter cutoffs ranged from 0.33
to 750s. Because many studies did not describe critical analysis
decisions, this survey likely understated the true diversity of
experimental methods in the fMRI literature. In other words,
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Analytic flexibility in fMRI research

Table 1 | Pre-processing parameters.

Table 2 | Model estimation parameters.

Despiking

Despiking using AFNI No despiking

Slice-timing correction

Slice-timing correction No slice-timing correction

Spatial normalization

Normalization of Normalization of Normalization with
functional images to

the SPM EPI template

anatomical images to
the SPM T1 template

segmentation using
unified normalization

Spatial smoothing
Smoothing with kernel
of 4mm FWHM

Smoothing with kernel
of 8mm FWHM

Smoothing with kernel
of 12mm FWHM

fMRI researchers may choose from a wide array of acceptable
methodological strategies.

Critically, methodological studies suggest that this variability
in analytic strategies may translate into variability in research out-
comes. Countless studies show that individual methodological
decisions can have important effects on estimates of fMRI acti-
vation. For example, temporal filtering (Skudlarski et al., 1999),
autocorrelation correction (Purdon and Weisskoff, 1998; Wool-
rich et al., 2001), global signal regression (Murphy et al., 2009;
Weissenbacher et al., 2009), and head motion regression (Friston
et al., 1996; Lund et al., 2005) can profoundly influence analysis
outcomes. Activation estimates also vary with the order of analysis
steps (Weissenbacher et al., 2009; Carp, 2011) and across analysis
software packages (Smith et al., 2005; Poline et al., 2006). Further,
combinations of analysis decisions may have interactive effects on
research outcomes (Churchill et al., 2012a,b).

However, while many studies have examined the effects of
individual analysis procedures or combinations of procedures on
research outcomes, most of these studies have focused on opti-
mizing the selection of analytic pipelines rather than quantifying
variability across pipelines. For example, Skudlarski et al. (1999)
investigated variations between analysis pipelines in receiver oper-
ating characteristic (ROC) measures; Della-Maggiore et al. (2002)
assessed the effects of differing pipelines on statistical power; and
Strother and colleagues (Strother et al., 2004; Churchill et al.,
2012a,b) evaluated pipelines using reproducibility and prediction
metrics. However, while these studies offer valuable insights into
which procedures should be applied and which parameters should
be used, they did not explicitly assess the variability of research out-
comes across analysis pipelines. In contrast, Hopfinger et al. (2000)
did measure variability in activation amplitude across 36 distinct
pipelines. But this study examined just four analysis steps, rather
than the complete pre-processing and modeling pipelines used in
most current fMRI studies, and focused on regional rather than
whole-brain activation results. Altogether, while a wealth of previ-
ous studies have investigated the question of pipeline optimization,
relatively few have considered the question of pipeline variability.

Thus, expanding on previous studies of analytic flexibility, the
present study estimated the variability of fMRI methods across
10 pre-processing and model estimation steps. Between two and
four options were considered for each step (see Tables 1 and 2).

Normalization-modeling order

Normalize before modeling Model before normalization

High-pass filtering
High-pass filtering No high-pass filtering

using a cutoff of 128s

Temporal autocorrelation correction
AR(1) modeling No correction for temporal

autocorrelation

Run concatenation
Runs concatenated No run concatenation

before model estimation

Model basis set
Finite impulse response’,
time points 3-4

versus baseline

1

'

Hemodynamic
response function

Finite impulse response
time by condition
interaction

Head motion regression

Six regressors2 Twelve Twenty-four No motion

regressors® regressors* regression

"Eight basis functions.

?Raw motion parameters.

°Raw and time-shifted motion parameters.

“Raw, time-shifted, squared, and time-shifted squared motion parameters.

Enumerating all combinations of each of the steps yielded a total
of 6,912 unique analysis pipelines. Activation estimates from each
pipeline were then statistically thresholded and corrected for mul-
tiple comparisons using five commonly used techniques, yielding
34,560 unique thresholded activation maps. By examining a range
of analysis pipelines orders of magnitude greater than those con-
sidered in previous studies, the present investigation yields the
most comprehensive picture of methodological flexibility in the
fMRI literature available to date.

MATERIALS AND METHODS

DATA ACQUISITION

The present study re-analyzed a previously published fMRI study
of response inhibition (Aron et al., 2007). Data were drawn from
the Open fMRI database! (Accession Number: ds000008; Task:
001). Fifteen subjects completed three runs of a standard event-
related stop-signal task and three runs of a conditional stop-signal
task. Only data from the standard stop-signal task were consid-
ered here. The task included three trial types. On go trials, subjects
were instructed to make a motor response; on successful stop tri-
als, subjects were instructed to withhold a response and were able
to do so; and on failed stop trials, subjects were instructed to with-
hold a response but failed to do so. Functional data were acquired
using a 3 T Siemens Allegra MRI scanner (TR: 2 s; TE: 30 ms; flip
angle: 90°; voxel dimensions: 3.125 mm X 3.125 mm X 4.0 mm).
Each of the three functional scanning runs included 176 images.
High-resolution T1 MPRAGE images were also acquired for use

Uhttp://www.openfmri.org
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in spatial normalization (TR: 2.3 s; TE: 2.1 ms; voxel dimensions:
1.0mm x 1.33 mm X 1.33 mm). Complete imaging and behav-
ioral data were only available for 13 of the subjects; the remaining
two subjects were excluded from analysis. Further details on sam-
ple characteristics, task specifications, and imaging acquisition are
given in the original report of these data (Aron et al., 2007).

PIPELINE GENERATION

To generate a large collection of analysis pipelines, five pre-
processing decisions and five modeling decisions for which mul-
tiple strategies appear in the research literature were selected.
Pre-processing decisions, detailed in Table 1, included despiking
(despiking or no despiking), slice-timing correction (slice-timing
correction or no correction), spatial normalization (normalization
to a functional template, to an anatomical template, or using seg-
mentation of anatomical images), and spatial smoothing (FWHM
4, 8, or 12 mm). Modeling decisions, detailed in Table 2, included
the order of normalization and model estimation (images were
normalized before or after model estimation), high-pass filtering
(128 s cutoff or no filtering), autocorrelation correction [AR(1)
correction or no correction], run concatenation (run concatena-
tion or no run concatenation), basis set [canonical hemodynamic
response function, finite impulse response (FIR) with the contrast
of time points 3 and 4 versus fixation, and FIR with the interac-
tion of time point by condition], and head motion regression (6,
12, or 24 motion parameters, or no motion regression). Taking
all combinations of these options yielded 6,912 unique analysis
pipelines.

Despiking was implemented using the 3dDespike tool in AFNI
version 2011_05_26_1456. All other steps were implemented using
SPM 8 release 4010 (Wellcome Trust Centre for Neuroimaging,
UCL, UK) running under Matlab 2011b (The Mathworks, Inc.,
Natick, MA, USA).

Data from each subject were submitted to each analysis
pipeline. Each single-subject model included separate regressors
for go trials, successful stop trials, and failed stop trials. Single-
subject models were combined using random-effects analysis. Test
statistics (i.e., t and F values) were converted to Z-values after
contrast estimation using a transformation adapted from the ttoz
and ftoz utilities in FSL version 4.1.8. All further analysis was based
on random-effects models of the contrast of successful stop trials
versus go trials.

To assess the variability in activation strength across models,
the range of Z-values (referred to hereafter as the analytic range)
was computed for each voxel and for each contrast. In addition,
the range of activation values associated with each analysis step
(despiking, slice-timing correction, etc.) was estimated by com-
puting the mean absolute difference of Z-values over all pairs of
parameter options and over all settings of other analysis para-
meters. For example, to estimate the analytic range attributable
to changes in spatial smoothing kernel, the absolute value of the
differences between (a) 4 and 8 mm FWHM, (b) 4 and 12 mm
FWHM, and (c) 8 and 12 mm FWHM were averaged over all com-
binations of all other analysis parameters for each voxel and each
contrast. Because the analytic range metric used here is based on
variability in Z-values, this metric is sensitive to differences in both
parameter estimates and error variance across pipelines.

Table 3 | Statistical thresholding parameters.

Uncorrected Corrected Cluster

single-voxel single-voxel size

threshold threshold threshold
Monte Carlo @ p < 0.01 p<0.01 n/a Determined by

simulation

Monte Carlo @ p < 0.001 p <0.001 n/a Determined by

simulation
Monte Carlo @ p <0.0001 p <0.0001 n/a Determined by
simulation
False discovery rate n/a p <0.05 n/a
Gaussian random field n/a p<0.05 n/a
theory

Many neuroimaging studies report the locations of peak acti-
vation for contrasts of interest. Indeed, spatial precision is often
advertised as one of the chief virtues of MRI as compared with
other imaging techniques. Thus, the variability of peak activa-
tion coordinates across analysis pipelines was assessed as well.
For each analysis pipeline and each contrast, the coordinates of
the peak activation from each hemisphere were extracted. The
distribution of peak coordinates was then plotted to assess the
spatial dispersion of peak activation locations. To assess vari-
ability in localization within circumscribed regions of interest
(ROIs), coordinates of peak activation were also extracted for each
analysis pipeline within each of two ROIs: a right inferior frontal
gyrus region (comprising the pars triangularis and pars opercularis
regions of the right inferior frontal gyrus) and a right temporal
cortex region (comprising the right superior and middle tempo-
ral gyri). All ROIs were defined using the Automatic Anatomical
Labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002).

The 6,912 random-effects statistical maps were also thresholded
and corrected for multiple comparisons according to five strate-
gies (Table 3), yielding 34,560 thresholded maps for each contrast.
Activation maps were thresholded using three versions of a Monte
Carlo simulation procedure, as implemented in the Resting-State
fMRI Data Analysis Toolkit (REST; Song et al., 2011)2. These three
thresholding approaches used uncorrected single-voxel thresholds
of p <0.01, p < 0.001, or p < 0.0001. Cluster size thresholds were
then selected to set the cluster-wise false positive rate at 5% for
each approach. Statistical maps were also thresholded using the
false discovery rate (FDR; Genovese et al., 2002) and Gaussian ran-
dom field theory (RFT; Nichols and Hayasaka, 2003) correction
procedures, as implemented in SPM 8. Both the FDR and RFT
procedures used a corrected single-voxel threshold of p < 0.05;
neither of these methods employed cluster size thresholds.

It is important to note that these thresholding methods take
different approaches to the problem of multiple comparisons.
The Monte Carlo and RFT corrections used here attempt to con-
trol the family wise error at 5%. Using these corrections, 5% of
activation maps should contain at least one false positive acti-
vation. In contrast, the FDR correction attempts to control the

Zhttp://www.restfmri.net
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proportion of false positive voxels, such that 5% of significantly
activated voxels should be false positives in a given activation map.
Further, while the RFT and FDR corrections control the false
positive rate at the level of individual voxels, the Monte Carlo
correction controls the false positive rate at the level of clusters.
Because these thresholding strategies approach the problem of
multiple comparisons in different ways, it was expected that dif-
ferent strategies would yield different results. However, all three
strategies appear to be used interchangeably in published stud-
ies, with many reports describing their chosen approach simply as
“correcting for multiple comparisons.”

All code for generating analysis pipelines, calculating analytic
variability, statistical thresholding, and plotting figures is freely
available online’.

RESULTS

ANALYTIC VARIABILITY OF ACTIVATION STRENGTH

Estimates of activation strength showed substantial variability
across analysis pipelines. Analytic range values (i.e., the range
of Z-values across pipelines) for the contrast of successful stop
trials versus go trials are displayed in Figure 1. Range values var-
ied from 1.14 in the right superior frontal gyrus to 8.83 in the
right superior temporal gyrus, with a median analytic range value
of 3.44. Analytic range also varied with mean activation across
analysis pipelines. Mean activation and analytic range for the
successful stop versus go contrast were highly correlated across
voxels [r(44,614) =0.87, p <0.001], such that voxels with the
strongest activation also showed the greatest variability across
analysis pipelines.

While each analysis step contributed to variability in activa-
tion strength across pipelines, different steps were associated with
distinct patterns of variability across brain regions. For the con-
trast of successful stop trials versus go trials, the analytic range
values for choices of smoothing kernel (Figure 2) and model
basis set (Figure 3) were greatest in regions of maximal mean
activation, including superior temporal gyrus and precuneus. In
contrast, the effects of despiking (Figure 2) and head motion
regression (Figure 3) were generally greatest toward the edges of
the brain, particularly in ventral frontal regions. Other steps, such
as slice-timing correction and spatial normalization, exerted idio-
syncratic patterns of focal effects in a variety of regions across the
brain (Figure 2), whereas autocorrelation correction was associ-
ated with diffuse patterns of change across the brain and ventricles
(Figure 3).

Finally, range maps were moderately correlated across analysis
steps. The mean absolute correlation across voxels between range
maps for all pairs of analysis steps was r = 0.49, with an average
explained variance of R? =0.26. In other words, while different
analysis steps exerted spatially correlated effects on analysis out-
comes across the brain, correlations among step-wise variability
maps explained a minority of the variance associated with other
analysis steps.

Thus, estimates of activation strength showed considerable
variability across analytic pipelines; voxels that showed highly
significant activations under some pipelines yielded null results
under others. Pipeline-related variability was strongly correlated

3https://github.com/jmcarp/fmri-pipe

with average activation, such that activation estimates were most
variable in regions showing the greatest overall activation. Finally,
different analysis steps showed correlated but distinct patterns of
influence across the brain.

ANALYTIC VARIABILITY OF ACTIVATION LOCATION

Activation localization also varied widely across analysis pipelines.
To describe the spatial dispersion of peak activation locations,
the coordinates of the most significant activation were extracted
for each hemisphere and for each pipeline. As seen in Figure 4,
the results showed a considerable degree of consistency across
pipelines: many pipelines yielded maximal activation in the supe-
rior temporal gyrus, the supramarginal gyrus, and the right infe-
rior frontal gyrus. Within these regions, however, peak locations
were widely dispersed, with activations extending along the length
of the sylvian fissure. And many pipelines yielded peak locations
outside these regions. In the left hemisphere, 672 unique peak loca-
tions were observed, with standard deviations of 12.8, 38.5, and
21.8 mm along the x-, y-, and z-axes, respectively. Activation peaks
extended along the anterior-posterior axis from the middle frontal
gyrus (y =63.0) to the middle occipital gyrus (y = —108.875);
along the lateral-medial axis from the middle temporal gyrus
(x=—71.75) to the middle occipital gyrus (x =—18.625); and
along the inferior-superior axis from the posterior cerebellum
(z=—50) to the postcentral gyrus (z=80.0). In the right hemi-
sphere, 534 unique peaks were observed, with standard deviations
of 12.6, 30.4, and 16.4 mm. Peaks ranged along the anterior-
posterior axis from the superior frontal gyrus (y =56.75) to the
middle occipital gyrus (y = —108.875); along the medial-lateral
axis from the posterior cerebellum (x =—15.5) to the superior
temporal gyrus (x =72.0); and along the inferior-superior axis

from the posterior cerebellum (z = —50.0) to the postcentral gyrus
(z=75.0). In all, peaks were identified in 69 of the 128 regions
defined by the AAL atlas.

The foregoing analysis investigated pipeline variability in the
localization of left- and right hemisphere activation peaks. How-
ever, investigators may be more interested in the localization
of peak activation within specific brain regions rather than an
entire cerebral hemisphere. To explore pipeline variability within
circumscribed ROIs, peak activation coordinates were extracted
for each pipeline within ROIs comprising the right inferior frontal
gyrus and the right temporal cortex. This analysis identified 223
unique activation peaks in the right inferior frontal gyrus and
197 unique peaks in the right temporal cortex. As displayed in
Figure 5, activation peaks were distributed widely across the
right inferior frontal gyrus. Peaks in the right temporal cortex
were relatively concentrated toward the center of the region, but
nevertheless extended to span nearly the entire anterior-posterior
and inferior-superior axes of the mask.

In sum, the localization of activation peaks also revealed
both consistency and variability across analysis pipelines. While
many pipelines yielded peak hemispheric activation locations in
a network of regions thought to be related to response inhibi-
tion (Aron et al., 2004), peak locations were scattered widely
throughout these regions, as well as additional regions throughout
much of the brain. Analysis of peak activation distribution within
inferior frontal and temporal regions also revealed considerable
variability in localization across pipelines.
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Mean Activation Analytic Range

FIGURE 1 | Variation in activation strength across analysis pipelines. pipelines. Images are presented in neurological orientation, with the left
Mean activation denotes the average Z-value for each voxel across all hemisphere displayed on the left. Note that color scales differ across
analysis pipelines; analysis range denotes the range of Z-values across all panels.
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FIGURE 2 | Variation in activation strength attributable to pre-processing choices. Images are presented in neurological orientation, with the left
hemisphere displayed on the left. Note that color scales differ across panels.
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hemisphere displayed on the left. Note that color scales differ across panels.

FIGURE 3 | Variation in activation strength attributable to model estimation choices. Images are presented in neurological orientation, with the left

High-Pass Filtering

ANALYTIC VARIABILITY OF ACTIVATION SIGNIFICANCE

The previous analyses revealed substantial quantitative variation
in analysis outcomes (i.e., activation strength and location) across
pipelines. Analysis of statistically thresholded images revealed that
qualitative analysis outcomes (i.e., activation significance) varied
with respect to methodological decisions as well. The 6,912 statisti-
cal maps were thresholded and corrected for multiple comparisons

using five strategies: three variants of a Monte Carlo procedure,
as well as FDR and Gaussian RFT corrections (Table 3). These
parameters yielded 34,560 unique thresholded maps for each
contrast.

For the successful stop versus go contrast, the proportion of
significantly activated voxels (excluding non-brain voxels) var-
ied from 0 to 26.3%, with a median of 4.6%. Monte Carlo
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FIGURE 4 | Spatial distribution of peak activation locations across
analysis pipelines across the cerebral hemispheres. Shaded spheres
indicate the locations of activation peaks. Sphere colors denote the base-10

Right Hemisphere

logarithm of the number of pipelines yielding maximal activation for that
location; colors range from blue, indicating a single pipeline, to red, indicating
526 pipelines.

Right Inferior Frontal Gyrus

FIGURE 5 | Spatial distribution of peak activation locations across
analysis within anatomically defined regions of interest (ROls). Red
contour lines indicate the boundaries of the ROls. All images represent lateral
views of the right hemisphere. Shaded spheres indicate the locations of
activation peaks. Sphere colors denote the base-10 logarithm of the number

Right Temporal Cortex

of pipelines yielding maximal activation for that location. For the right inferior
frontal gyrus ROI (left panel), colors range from blue, indicating a single
pipeline, to red, indicating 639 pipelines. For the right temporal cortex ROI
(right panel), colors range from blue, indicating a single pipeline, to red,
indicating 844 pipelines.

simulation with a single-voxel threshold of p <0.01 proved to
be the most liberal procedure, with a median of 12.8% of
brain voxels activated. Monte Carlo simulation with single-
voxel thresholds of p <0.001 and p <0.0001 yielded median
activation proportions of 5.4 and 1.9%, respectively. Using FDR
correction yielded a median activation proportion of 10.8%.
RFT correction was the most conservative approach, with a
median of 0.16% of brain voxels activated. Critically, all five
thresholding methods aimed to control the whole-brain false

positive rate at 5%. Thus, these results suggest that some
thresholding approaches are far more conservative than oth-
ers, even when targeting the same corrected false positive
rate —a point that has been raised in previous studies (e.g.,
Lieberman and Cunningham, 2009) but that merits being repeated
here.

To characterize the likelihood of significant activation across
all 34,560 thresholded maps, the proportion of pipelines yielding
significant activation was computed for each voxel (Figure 6). This
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FIGURE 6 | Activation significance across analysis pipelines using
three variants of a Monte Carlo thresholding procedure. Significance
proportion denotes the fraction of thresholded maps yielding significant
activation for each voxel. Discordance index denotes the level of
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disagreement across threshold maps. Images are presented in
neurological orientation, with the left hemisphere displayed on the left.
Note that color scales range from 0 to 1 for significance proportion and
from 0 to 0.5 for discordance index.

index did not reach 1 (or 100%) for any voxel for the successful
stop versus go contrast. In other words, no voxels showed sig-
nificant activation under all analysis and thresholding pipelines.
However, some voxels consistently showed significant activation
over nearly every analytic approach. The peak significance propor-
tion in the right superior temporal gyrus reached 0.93. A subset of
voxels in the right inferior frontal gyrus and right middle occip-
ital gyrus also showed significant activation across a majority of
pipelines, with peak significance proportions of 0.77 and 0.83,
respectively. In contrast, many voxels deep within the arcuate fas-
ciculus yielded significance proportions of zero: these voxels did
not show significant activation under any combination of ana-
lytic and thresholding strategies. Somewhat paradoxically, voxels

showing relatively consistent activation (i.e., high significance
proportion indices) also exhibited relatively strong quantitative
variability across analysis pipelines (i.e., high analytic range values;
R? =0.64); analytic range values in the voxels of peak significance
proportion in the right superior temporal gyrus, the right inferior
frontal gyrus, and the right middle occipital gyrus were 8.13, 6.57,
and 7.05 Z-units, respectively. Finally, nearly all voxels yielded
non-zero significance proportions: 90.3% of brain voxels showed
significant activation for at least some thresholded maps.

Thus, some voxels were significantly activated for nearly all
analysis pipelines; others did not yield significant activation
under any pipelines. However, some voxels yielded less consis-
tent results across pipelines. This disagreement about qualitative
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FIGURE 7 | Activation significance across analysis pipelines using false
discovery rate and Gaussian random field theory error corrections.
Significance proportion denotes the fraction of thresholded maps yielding
significant activation for each voxel. Discordance index denotes the level of
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“

disagreement across threshold maps. Images are presented in neurological
orientation, with the left hemisphere displayed on the left. Note that color
scales range from 0 to 1 for significance proportion and from 0 to 0.5 for
discordance index.

analysis outcomes was assessed at each voxel using the discordance
index:

discordance = minimum(significance proportion, 1 — signifi-
cance proportion).

This index ranged from 0 (when either 0 or 100% of analysis
pipelines yielded significant activation) to 0.5 (when exactly 50%
of pipelines yielded significant activation). Discordance indices
were high, often reaching the theoretical maximum value of 0.5,
in voxels surrounding regions of peak significance proportions
(Figures 6 and 7). For example, voxels bordering the bilateral
superior temporal gyrus and the right inferior frontal gyrus
showed consistently high disagreement across analysis pipelines.
These discordance rings around activation foci likely reflect
the effects of differing spatial smoothing kernels on activation
extent. Additional regions of disagreement included the pre-
cuneus (discordance index = 0.50), anterior cingulate cortex (dis-
cordance index = 0.44), and middle cingulate gyrus (discordance
index =0.30).

Altogether, estimates of the spatial extent of significant activa-
tion and the proportion of thresholded maps showing significant
activation revealed substantial flexibility across methodological
strategies. Furthermore, regions showing strong disagreement
across pipelines were observed throughout the brain, both in the

neighborhood of peak significance proportions and in additional
isolated clusters.

DISCUSSION
According to a mathematical model of bias in scientific research
(Ioannidis, 2005b), the prevalence of false positive results in pub-
lished reports increases with the flexibility of research outcomes.
Research outcomes are flexible to the extent that (a) researchers
have access to a broad range of experimental design and data ana-
lytic strategies and (b) different research strategies yield different
research outcomes. A recent survey of methods used in the fMRI
literature shows that research strategies are highly flexible across
published studies, with nearly as many unique methodological
pipelines as studies in the sample (Carp, 2012). However, the extent
to which flexible research strategies translate into flexible research
outcomes remains unclear. Thus, the present study sought to esti-
mate the flexibility of research outcomes across a wide range of
complete analysis pipelines applied to a single fMRI experiment.
The present results revealed both consistency and variability
across analysis pipelines. Some results were highly stable across
pipelines. For example, voxels in the right superior temporal gyrus,
the right inferior frontal gyrus, and the right middle occipital
gyrus showed significant activation for the successful stop versus
go contrast for atleast 77% of the 34,560 thresholded maps consid-
ered here. Thus, although quantitative responses (i.e., activation
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strength and location) in these regions proved variable across
pipelines, their qualitative responses (i.e., activation significance)
were quite stable. In other words, although we can be very confi-
dent that the level of stop-related activation in right inferior frontal
gyrus is greater than zero, there is much greater uncertainty about
the strength of this activation or its precise location within the infe-
rior frontal gyrus. These observations are consistent with the view
that the right inferior frontal gyrus is specialized for inhibitory
control (e.g., Aron et al., 2004). These results also largely uphold
the conclusions of the original stop-signal experiment by Aron
and colleagues (2007).

However, results also varied considerably from one pipeline
to another. Estimates of activation strength were highly variable
across analytic pipelines: in regions of peak overall activation, sig-
nificance estimates varied by over 8 Z-units. The localization of
peak activation also proved to be strongly pipeline-dependent.
Hundreds of unique peak coordinates were observed for each
contrast, with peak locations scattered throughout much of the
brain. For example, the contrast of failed stop trials versus base-
line yielded activation peaks in 83 of the 128 regions defined by
the AAL atlas. Finally, estimates of statistical significance showed
substantial variability across pipelines as well. For example, for the
successful stop versus go contrast, the proportion of activated brain
voxels ranged across pipelines from 0 to 26.3%. While some vox-
els were consistently activated, others showed strong disagreement
across analysis pipelines.

The flexibility of research outcomes illustrated here, along with
mathematical models linking flexible research methods with ele-
vated false positive rates (Ioannidis, 2005b), suggests that the risk
of false positive results in fMRI research may be greater than
expected. Nearly every voxel in the brain showed significant acti-
vation under at least one analysis pipeline. In other words, a
sufficiently persistent researcher determined to find significant
activation in virtually any brain region is quite likely to succeed.
By the same token, no voxels were significantly activated across all
pipelines. Thus, a researcher who hopes not to find any activation
in a particular region (e.g., to rebut a competing hypothesis) can
surely find a methodological strategy that will yield the desired null
result. If investigators apply several analysis pipelines to an exper-
iment and only report the analyses that support their hypotheses,
then the prevalence of false positive results in the literature may
far exceed the nominal rate.

It is important to note, however, that analytic flexibility only
translates into elevated false positive rates when combined with
selective analysis reporting. In other words, if fMRI researchers
reported the results of all analysis pipelines used in their studies,
then the flexibility documented here would not be problematic. To
the author’s knowledge, there is no evidence that fMRI researchers
actually engage in selective analysis reporting. But researchers in
other fields do appear to pursue this strategy. Surveys comparing
research protocols to published articles show that a majority of
randomized clinical trials add, omit, or replace study outcome
variables — and, critically, that investigators are more likely to
report significant outcomes than non-significant outcomes (Chan
et al., 2004a,b; Dwan et al., 2008; Mathieu et al., 2009). Similarly,
studies of putative brain volume abnormalities in patients with
mental health disorders report far more positive results than would

be expected given their power to detect such effects, likely reflecting
the selective reporting of favorable analysis outcomes (loannidis,
2011). Thus, if fMRI researchers behave like researchers in other
fields, then the methodological flexibility illustrated here would
indeed imply an elevated rate of false positive results in the fMRI
literature.

Critically, selective analysis reporting may occur without the
intention or even the awareness of the investigator. For example,
if the results of a new experiment do not concord with prior stud-
ies, researchers may adjust analysis parameters until the “correct”
results are observed. Researchers may also elect not to describe the
results of all analysis pipelines due to space limitations in journal
articles or to preserve the narrative flow of a manuscript. Finally,
researchers may simply not be aware of the risks posed by selective
analysis reporting. Thus, although the practice of selective analysis
reporting is deeply problematic, it need not reflect any malice on
the part of the researchers who engage in it.

It is also important to note that bias related to analytic flexibil-
ity and selective analysis reporting is not unique to fMRI research.
Indeed, previous studies have argued that selective analysis report-
ing can lead to false positive results in studies of randomized
controlled trials (Chan et al., 2004a,b), brain volume abnormali-
ties in psychiatric disorders (Ioannidis, 2011), and in the broader
research literature (Ioannidis, 2005b). Selective analysis reporting
can contaminate research results in any empirical field that allows
for multiple analytic approaches — in other words, for nearly all
empirical studies.

LIMITATIONS

Although the present study revealed a wide range of research
outcomes for a single experiment, the approach used here likely
underestimated the true flexibility of fMRI analysis methods. The
present study considered two to four parameters for each analy-
sis step, but many more parameters appear in the literature. For
example, while this study considered three normalization tar-
gets, a methodological survey of recent fMRI studies (Carp, 2012)
revealed a range of at least ten unique normalization targets. Sim-
ilarly, while high-pass filtering cutoffs ranged from 0.33 to 750 s in
this methodological survey, the present study only considered two
filtering parameters: a cutoff of 128 s or no temporal filtering.

In addition, a number of key analysis steps were not consid-
ered in the present study. For example, the present approach did
not investigate the effects of different strategies for coregistration
between structural and functional images, for brain extraction
and segmentation, for signal normalization, or for physiological
noise reduction — e.g., as implemented in RETROICOR (Glover
et al., 2000) or PHYCAA (Churchill et al., 2012c¢). Similarly, this
study did not consider tools for the correction or deletion of noisy
slices, brain volumes, or subjects, which may exert strong effects
on analysis outcomes (Tohka et al., 2008; Power et al., 2012).

Furthermore, this study relied largely on analysis steps imple-
mented in the SPM 8 software library. However, fMRI researchers
use several versions of SPM and a wide variety of different software
packages, with 32 unique libraries reported across a recent survey
of fMRI studies (Carp, 2012). Studies may also combine analysis
routines from multiplelibraries, further increasing the flexibility of
methodological approaches in the fMRI literature. This flexibility
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across software options may also contribute to analytic flexibil-
ity. Different libraries may offer different strategies for the same
analysis step. Further, even if multiple packages attempt to imple-
ment the same algorithms, ambiguities inherent in the translation
from natural and mathematical language to computer programs
may nonetheless result in differences between implementations
(Ince et al.,, 2012). Indeed, informal comparisons suggest that
choices of software package can have substantial effects on analysis
outcomes (Poline et al., 2006).

The present study also relied on a relatively small sample size
of 13 subjects. This sample size may have rendered many of the
pipelines underpowered to detect true effects, leading to high rates
of false negative results. However, the median sample size of single-
group fMRI studies is approximately 15 subjects (Carp, 2012).
Thus, while the present study is likely to be underpowered, it is
also about as underpowered as the typical study of its kind. Thus,
analytic flexibility in this sample is likely to be broadly represen-
tative of typical fMRI studies. Nevertheless, future studies should
repeat this analysis using larger sample sizes to determine how or
whether estimates of methods variability change with statistical
power.

In addition, the extent to which the analysis pipelines investi-
gated in this experiment resemble the true distribution of pipelines
in the research literature is unclear. To the extent that the distri-
bution of pipelines considered here differs from the distribution
in the research literature, the present study may either underes-
timate or overestimate the true flexibility of analysis outcomes.
For example, one third of the pipelines considered here estimated
parameters for spatial normalization using the unified segmen-
tation approach of SPM 8. But perhaps fewer or more than one
third of published fMRI reports appear to use this approach. Anal-
ogously, all of the pipelines considered here included some form of
correction for multiple comparisons. But a substantial fraction of
published studies appear not to use such corrections (Carp, 2012).
Thus, the pipelines examined in this study may not be fully rep-
resentative of the pipelines used in published reports. However,
because many published studies do not explicitly report which
analysis steps and parameters were used (Carp, 2012), it is chal-
lenging to determine the true distribution of analysis pipelines in
the literature. Future studies should continue to investigate the
prevalence of different analysis pipelines and the effects of these
pipelines on research outcomes.

Finally, it is important to note that the present study did not
address the issue of which analysis pipelines should be used.
Instead, this study merely sought to estimate the flexibility of
research results across pipelines. As described in the Introduc-
tion, many previous studies have considered the problem of
pipeline optimization (e.g., Strother et al., 2004; Churchill et al.,
2012a,b).

RECOMMENDATIONS

What steps can investigators take to mitigate the risk of false pos-
itive results posed by flexible analysis methods in fMRI studies?
As discussed above, the true range of fMRI methods cannot be
estimated unless research reports describe analysis pipelines in
detail. Thus, researchers should thoroughly describe the analysis
methods chosen, as well as the reasoning behind those choices.

Unfortunately, many published reports do not explicitly describe
critical design and analysis decisions (Carp, 2012). Standardized
reporting guidelines may help fMRI researchers to communicate
methodological choices in greater detail. Such guidelines, which
have been widely adopted by academic journals that publish stud-
ies of randomized controlled trials (Moher et al., 2001), diagnostic
accuracy (Bossuyt et al., 2003), and observational epidemiology
(von Elm et al., 2007), can significantly improve the quality of
methods reporting (Plint et al., 2006). Although no consensus
guidelines for the reporting of fMRI methods exist at present, the
reporting recommendations by Poldrack et al. (2008) provide a
useful starting point.

Flexibility in research methods may be particularly problem-
atic when it is undisclosed (Simmons et al., 2011). For example, a
hypothetical group of investigators might analyze an experiment
using a range of methodological strategies and discover that only
a few strategies yield positive results. If these investigators only
report the pipelines that favor their hypotheses, then readers may
not realize that the results of the experiment depend on (per-
haps arbitrary) methodological decisions. Thus, it is critical that
fMRI researchers report all analysis pipelines used in the course
of data analysis, whether or not those pipelines yielded results
favorable to the researchers’ hypotheses. For example, if a research
team initially used a canonical hemodynamic response function to
model activation time series but later opted to use a finite impulse
response basis set instead, the results of both strategies should be
described in full. Similarly, if researchers discover that a contrast
of interest yields significant activation using Monte Carlo correc-
tion but not using FDR correction, both sets of activation maps
should be reported. If investigators only describe a single analy-
sis pipeline, they should also certify that no additional pipelines
were used. Finally, reviewers can work to mitigate selective analysis
reporting as well. Indeed, Simmons and colleagues (2011) argue
that “reviewers should require authors to demonstrate that their
results do not hinge on arbitrary analytic decisions.” If authors
fail to indicate that they have fully described all analysis pipelines,
reviewers should require them to do so; if reviewers suspect that
critical results may depend on arbitrary methodological decisions,
they may ask authors to defend their choices or to report the results
of equally valid decisions.

Sharing data and analysis code may also help to unmask hid-
den flexibility in the analysis of fMRI experiments. If raw data
for an experiment are freely available, then interested readers may
reanalyze experiments on their own, searching out the analytic
boundary conditions of reported results. Several promising data
sharing initiatives focusing on resting-state imaging (the 1000
Functional Connectomes Project)*, structural imaging (the Open
Access Series of Imaging Studies database)’, and task-based par-
adigms (the Open fMRI database)® are currently underway. Data
from the present study were drawn from the Open fMRI database;
analysis code is freely available online (see text footnote 3).

False positive results driven by analytic flexibility may also
be mitigated by curtailing the range of available methodological

4http://fcon_1000.projects.nitrc.org
Shttp://www.oasis-brains.org
®http://openfmri.org
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strategies. For example, investigators may develop standardized
analysis pipelines that they apply to all of their experiments.
Researchers may also simply adhere to the default options in
their software packages of choice. However, while both of these
approaches have the potential to reduce analytic flexibility and
selective analysis reporting, they may not yield optimal analy-
sis pipelines. Continued methodological research can also shrink
the space of analytic approaches. For example, Sladky et al.
(2011) argue that studies should perform slice-timing correc-
tion (but see also Poldrack et al., 2011, pp. 41-42); Purdon and
Weisskoff (1998) suggest that studies should correct for tempo-
ral autocorrelation; and Lund et al. (2005) argue that studies
should include head motion regression. Following these rec-
ommendations alone would reduce the number of pipelines in
the present study from 6,912 to 1,296; additional research on
optimal procedures and parameters may further reduce experi-
menter degrees of freedom. Pipeline optimization tools developed
by Strother and colleagues can also be used to reduce analysis
flexibility (e.g., Strother et al., 2004; Churchill et al., 2012a,b).
These tools automatically identify the analysis pipelines that max-
imize reproducibility and prediction metrics estimated from the
data on a subject-by-subject basis. Thus, using these methods
reduces the risk that investigators might use a range of analy-
sis pipelines and selectively report those that yield favorable
results.

While these recommendations have the potential to reduce bias
due to analytic flexibility and selective analysis reporting, they do
not address other sources of error and bias. For example, while
reporting the results of all analysis pipelines would (by definition)
eliminate selective analysis reporting, it does not guarantee that
any of the reported pipelines is optimal. As noted above, con-
tinued research on pipeline optimization may help to resolve this

problem. In addition, none of these recommendations can address
the problems of intentional misrepresentation or fraud. The vol-
untary guidelines described here cannot prevent researchers from
covertly engaging in selective analysis reporting and claiming not
to have done so — or from manipulating or fabricating results.
Fortunately, though, relatively few scientists appear to engage in
outright fraud (John et al., 2012).

CONCLUSION

The present study reveals both consistency and flexibility in the
analysis of fMRI experiments. While some research outcomes
were relatively stable across analysis pipelines, others varied widely
from one pipeline to another. Given the extent of this variability, a
motivated researcher determined to find significant activation in
practically any brain region will very likely succeed —as will another
researcher determined to find null results in the same region. To
mitigate the effects of this flexibility on the prevalence of false posi-
tive results, investigators should either determine analysis pipelines
a priori or identify optimal pipelines using data-driven metrics. If
researchers use multiple pipelines to analyze a single experiment,
the results of all pipelines should be reported — including those
that yielded unfavorable results. If implemented, these steps could
significantly improve the reproducibility of research in the fMRI
literature.
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Background

2 Many areas of neuroscience are now critically dependent on computational tools to help
understand the large volumes of data being created. Furthermore, computer models are
s+ increasingly being used to help predict and understand the function of the nervous sys-
tem. Many of these computations are complex and often cannot be concisely reported in
¢ the methods section of a scientific article. In a few areas there are widely used software
packages for analysis (e.g., SPM, FSL, AFNI, BrainVoyager, FreeSurfer in neuroimaging)
s or simulation (e.g. NEURON, NEST, Brian). However, we often write new computer
programs to solve specific problems in the course of our research. Some of these pro-
10 grams may be relatively small scripts that help analyze all of our data, and these rarely
get described in papers. As authors, how best can we maximize the chances that other
12 scientists can reproduce our computations or reuse our methods on their data? Is our
research reproducible!?
14 To date, the sharing of computer programs underlying neuroscience research has
been the exception (see below for some examples), rather than the rule. However, there
16 are many potential benefits to sharing these programs, including increased understand-
ing and reuse of your work. Furthermore, open source programs can be scrutinized and
15 improved, whereas the functioning of closed source programs remains forever unclear?.
Funding agencies, research institutes and publishers are all gradually developing policies
2 to reduce the withholding of computer programs relating to research®. The Nature fam-
ily of journals has recently published opinion pieces in favor of sharing whatever code is
» available, in whatever form*®°. More recently, since October 2014, all Nature journals re-
quire papers to include a statement declaring whether the programs underlying central re-
24 sultsin a paper are available. In April 2015 Nature Biotechnology offered recommendations
for providing code with papers and began asking referees to give feedback on their ability
2%  to test code that accompanies submitted manuscripts®. In July 2015 F1000Research stated
that “Software papers describing non-open software, code and/or web tools will be re-
2 jected” (http://£1000research.com/channels/f1000-faculty-reviews/for-authors/
article-guidelines/software-tool-articles). Also in July 2015, BioMed Central in-
50 troduced a minimum standards of reporting checklist for BMC Neuroscience and several
other journals, requiring submissions to include a code availability statement and for
» code to be cited using a DOI or similar unique identifier’. We believe that all journals
should adopt policies that highly encourage, or even mandate, the sharing of software
. relating to journal publications.

What should be shared?

ss It may not be obvious what to share, especially for complex projects with many collabora-
tors. As advocated by Claerbout and Donoho, for computational sciences the scholarship
3 is not the article; the “scholarship is the complete software [...]”%?. So, ideally, you should

share as much code and data as is needed to allow others to reproduce your work, but

2
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w0 this may not be possible or practical. However, it is expected that you will share key
parts of the work, e.g. implementations of novel algorithms or analyses. At a mini-
2 mum, we suggest following the recommendation of submission of work to ModelDB!?,
i.e. to share enough code, data and documentation to allow at least one key figure from
w your manuscript to be reproduced. However, by adopting appropriate software tools, as
mentioned in the next section, it is now relatively straightforward to share the materials
s required to regenerate all figures and tables. On the other hand, code that is not novel
because it is already available, or that you feel that is unlikely to be of use to others need
s not be shared. This includes code that performs simple preprocessing or statistical tests,
or code that deals with local computing issues such as hardware and software configu-
so rations. Finally, if your work is computationally intensive and requ