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The same networks are 
recruited in task and rest

understand the functional role of the PCC requires investigation
of how its activation and functional connectivity is modulated by
task demands.

The PCC during task
Behavioral results for N-back task
To investigate the relationship between different parts of the PCC
and an executive network engaged during attentionally demand-
ing task performance, we used an N-back task. Previous studies
have shown that a frontoparietal executive system is activated
more by the two- than zero-back version of the task and that the
two-back task is associated with a relative deactivation within the
default mode network (Braver et al., 1997; Esposito et al., 2006).
As expected, accuracy was higher and reaction time faster in the
zero-back task compared with the two-back task (Fig. 3). This
was true in both the visual and auditory modality. Reaction time
measures for the visual modality cannot be directly compared
with the auditory modality given the temporal difference in pre-
sentation of an auditory and visual stimulus. However, accuracy
(mean proportion of correct responses) was similar in both
modalities.

Coupled activation and deactivation within the cognitive control
network and the DMN
We first investigated activation changes in the N-back task using
a GLM-based analysis, explicitly modeling the timings of N-back
blocks. The attentionally demanding two-back condition was as-
sociated with greater activation than the zero-back within a fron-
toparietal network frequently identified in this type of executive
task, which included regions involved in cognitive control (Fig.
4a). Peaks of activation were seen within lateral and superior
parietal regions, as well as medial and lateral frontal regions (Ta-

ble 1). Given the overlap between this network and that found in
many previous fMRI tasks that involve externally directed, cog-
nitively mediated control of behavior, from here on we will refer
to the network as the CCN. The same contrast showed deactiva-
tion on the two-back task within what is generally defined as the

Figure 4. Cognitive control and default mode networks associated with N-back performance. a, Whole-brain results from general linear model analysis. Red–yellow regions show increase in
activation with task difficulty (i.e., two-back ! zero-back) within a frontoparietal executive network (cognitive control network). Blue–light blue regions show regions that deactivate with task
difficulty (zero-back ! two-back) within the DMN. Results are cluster corrected at p " 0.05. b, Whole-brain results from the data-driven ICA analysis. One component closely reflects the GLM
analysis, showing activation of the frontoparietal executive network and deactivation within the DMN. Results are thresholded at a p ! 0.5 level under an alternative hypothesis test based on a
Gaussian/Gamma mixture model fitted to the intensity histogram of the component.

Table 1. Activation peaks from within significant clusters ( p < 0.05 cluster
corrected) for contrast of zero- > two-back and two- > zero-back working
memory tasks

Z MNI coordinates

Peak activation for zero- ! two-back (DMN)
Ventral medial prefrontal cortex 5.55 6 70 14
Superior frontal gyrus 4.92 8 50 38
Ventral posterior cingulate 5.23 #6 #48 26
Dorsal posterior cingulate 5.11 0 #24 38
Precuneus cortex 4.83 #8 #60 14
Ventral posterior cingulate 4.71 2 #46 28
Left inferior parietal lobe 5.73 #56 #66 24
Right inferior parietal lobe 4.82 50 #62 30

Peak activation for two- ! zero-back (CNN)
Right orbital frontal cortex 6.18 24 10 #10
Right putamen 6.18 22 14 #6
Left putamen 5.99 #20 10 #10
Left orbital frontal cortex 5.81 #16 16 #12
Left inferior frontal gyrus, pars opercularis 5.8 #38 10 26
Left middle frontal gyrus 5.61 #36 2 52
Right inferior parietal lobe, angular gyrus 6.44 20 #68 60
Left inferior parietal lobe, angular gyrus 5.88 #24 #70 54
Left supramarginal gyrus 5.56 #44 #32 34
Right cerebellum VI 4.28 24 #64 #32
Right cerebellum crus I 4.09 46 #52 #38
Left cerebellum crus I 3.76 #22 #66 #36
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Resting state networks (RSNs)

Large-scale Networks in fMRI



• What is happening at faster time-scales?

• What are the specific neuronal interactions?

Large-scale Networks in MEG?



• Can we use MEG to 
answer these questions?

• excellent temporal res (millisecs)

• good spatial res

• non-invasive

• What is happening at faster time-scales?

• What are the specific neuronal interactions?

Large-scale Networks in MEG?



MEG: what functional connectivity (FC) 
measure should we use?

• Can NOT use raw zero-lag correlation as we do in fMRI (due to conduction 
delays)

• Need to use measures that are robust to non-zero lags

Brookes et al.; Neuroimage (2013)

Hipp et al.; Nat Neuro (2012) 

e.g. Amplitude Coupling 
- Detects if the amplitude (or power or envelope) time courses in particular 
frequency bands are correlated



Estimate Amplitude 
Time Courses

• e.g. via Hilbert or 
Wavelet transform

Source Recon 

• projects data 
  into brain space

Low-pass 
temporal filter

MEG Data 
Acquisition

• data gathered in
  sensor space

• Seed-based FC 
maps

• Network Matrices

Brookes et al.; Neuroimage (2013)
Hipp et al.; Nat Neuro (2012) 

MEG FC: Amplitude Coupling

Spatial 
Leakage 

Correction

Compute
correlations on 

Amplitude Time 
Courses



Significant beta band amplitude 
correlation between the left and right 
motor cortices

Brookes et al., Neuroimage, (2011)

reconstructions of the simulated left and right motor cortex sources.
Connectivity between the seed and test locations was measured using
both AEC (Δ=10 s) and CAE (Δ=0.5 s). Results are shown in Fig. A5.

Results in Fig. A5 show that a source placedmidway between the left
and right motor cortices has little effect on the FC values measured in
simulation. The implication is that the beamformer spatial filters
(derived from the real data) act as an effective means to suppress this
third source.

Appendix 3. The existence of an interfering non-brain source

In a single subject, the electrocardiogram (ECG) was acquired
concurrently with MEG data by placing three electrodes on the
subject's chest. ECG data were acquired specifically to assess the
contribution of electrical interference from the heart to the MEG. In
order to assess the effect of non-neuronal physiology on raw and
beamformer projected MEG data, the level of cardiac interference in a
single subject was measured. The ECG was filtered into the same
frequency bands as those used for MEG analysis. The Pearson
correlation coefficient between the filtered ECG and the filtered
MEGwas assessed at eachMEG sensor, resulting in amap showing the
topographical distribution, in sensor space, of cardiac interference for
each of the seven frequency bands. Note that Pearson correlation
values were computed for the data acquired during the resting state
phase of the experiment only. MEG data were then projected into the
brain. (To ensure optimized spatial resolution, the beamformer
weights were based on covariance computed using the entire
dataset.) Beamformer projected timecourses were extracted from
two locations of interest in the left and right sensorimotor areas (as
defined by the MEG localizer experiment) and the Pearson correlation
coefficients between the ECG and the two projected timecourses
(again for the resting phase of the experiment) were computed. These
correlation values were compared to equivalent values computed at
the MEG sensors most affected by the motor cortex sources (i.e. those

MEG sensors with a lead field greater than 80% of the maximum
absolute lead field at any sensor).

Fig. A6 shows an example of the interference rejection properties
of the beamformer. As alluded to in the introduction, a confound of
fcMRI is that results can be affected by non-neuronal physiological
interference caused by, for example, the cardiac cycle, changes in the
cardiac cycle, respiration or changes in respiration rate. Here we show
that MEG can also be affected by similar confounds since it is
susceptible to interference from non-neuronal sources, in this case the
electrical signal from the heart. Fig. A6A shows the ECG plotted
alongside the MEG signal from a single sensor. Fig. A6B shows the
Pearson correlation between the frequency filtered ECG and the
frequency filtered channel space MEG signals. Note that cardiac
interference affects a large number of MEG sensors and, unless
adequately dealt with, could lead to spurious connectivity measure-
ment, particularly when using channel space metrics. Figs. A6C and D
highlight the artifact rejection properties of the beamformer. In both
cases the blue line shows Pearson correlation between the ECG and
the MEG sensors most affected by sources in the left (C) and right (D)
sensorimotor cortices. The green line shows correlation between the
ECG and the beamformer reconstructed timecourses from the peak
voxel of interest in the left (C) and right (D) sensorimotor cortices.
Notice that for sensor space data, high correlation with the ECG is
observed, and further that correlation is inhomogeneous with respect
to frequency. However, following application of the spatial filter,
correlation is significantly reduced and is less than 0.05 in all
frequency bands.

Appendix 4. The existence of an interfering brain source

In Fig. 3C, AEC, CAE, Coh and ICoh measurements extracted from
real data have been corrected by subtraction of the equivalent metrics
applied to simulated data. In Fig. A7, for completeness, we show the
AEC, CAE, Coh and ICoh metrics applied to real and simulated data

Fig. A7. Fig. A7 AEC, CAE, Coh and ICoh metrics applied to real (blue curve) and simulated (black curve) data extracted from left and right motor cortices. The four columns show the
four separate FC metrics and the 5 rows show different values of delta.
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• Resting state data
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Source Recon 

• projects data 
  into brain space

MEG Data 
Acquisition

• data gathered in
  sensor space

• Seed-based FC 
maps

• Network Matrices

Low-pass 
temporal filter

Spatial 
Leakage 

Correction

MEG FC: Amplitude Coupling

Estimate Amplitude 
Time Courses

• e.g. via Hilbert or 
Wavelet transform

Compute
correlations on 

Amplitude Time 
Courses



Spatial Leakage

Uncertainties in the source reconstruction induce zero-lag spatial correlations in 
source space 

True 
connection

SOLUTION: remove all zero-lag correlations
- Orthogonalise pairs of raw time courses (regress one out of the other) 
before computing amplitude time courses

Artificial
Connection

Inherited 
artificial

connection 

Brookes et al. ; Neuroimage (2013)

Hipp et al.; Nat Neuro (2012) 



Multi-region spatial leakage correction

Can perform a multi-region orthogonalisation in one shot:

- finds the closest set of orthogonal vectors to the original timecourses
- any subsequent multi-variate analysis (e.g. regularised partial correlation) is possible

Colclough,…,Woolrich; Neuroimage, 2015



Multivariate Spatial
Leakage Correction

No Spatial Leakage 
Correction

8 subjects’ eyes open resting-state data
- alpha band (8-12 Hz) amplitude time-courses 
- compute regularised partial correlation network matrices

- thresholded at 5% FDR
- reveals a strongly inter-connected visual network

Alpha-Band Resting-State Network Structure
Network edges in the thresholded partial correlation matrices identify connections between 38 fMRI-derived ROIs

No CorrectionSymmetric Multivariate Leakage Correction

Standard Z-score
-15 150

Anterior

Posterior

Right

Left

38 cortical regions

Network matrices from resting MEG

Colclough, Smith … Woolrich; Neuroimage (2015)



MZ DZ

Colclough, Smith … Woolrich; In submission

Example Application: Heritability of MEG connectomes

Human Connectome Project twin rest data



Colclough, Smith … Woolrich; In submission

• Mean edge heritability: 33% (p = 0.01)
• Shared genetics outweigh shared 

environment (p = 0.02)

log(difference in network matrices)
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Human Connectome Project twin rest data

MEG - alpha band amplitude correlations (61 subjects)

Example Application: Heritability of MEG connectomes



Source Recon 

• projects data 
  into brain space

MEG Data 
Acquisition

• data gathered in
  sensor space

• Seed-based FC 
maps

• Network Matrices

Low-pass 
temporal filter

Spatial 
Leakage 

Correction

MEG Resting State Networks?

Estimate Amplitude 
Time Courses

• e.g. via Hilbert or 
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Temporal 
ICA

Source Recon 

• projects data 
  into brain space

MEG Data 
Acquisition

• data gathered in
  sensor space

• RSNs

Spatial 
Leakage 

Correction

• Seed-based FC 
maps

• Network Matrices

Low-pass 
temporal filter

MEG Resting State Networks?

Estimate Amplitude 
Time Courses

• e.g. via Hilbert or 
Wavelet transform
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Courses



• RSNs found in MEG data 
using temporal ICA

• Eyes open, 10 subjects

• Good correspondence with 
fMRI ICA networks

• Found in beta band (except 
for DMN in the alpha 
band)

Brookes,…, Morris; PNAS (2011)

MEG RSNs



• Can NOT use raw zero-lag correlation as we do in fMRI (due to conduction 
delays)

• Need to use measures that are robust to non-zero lags

Brookes et al.; Neuroimage (2013)

Hipp et al.; Nat Neuro (2012) 

e.g. Amplitude Coupling 
- Detects if the amplitude (or power or envelope) time courses in particular 
frequency bands are correlated

MEG: what FC measure should we use?



• Can NOT use raw zero-lag correlation as we do in fMRI (due to conduction 
delays)

• Need to use measures that are robust to non-zero lags

• Phase coupling measures

• Detect consistent phase differences 
between brain signals

MEG: what FC measure should we use?



• Detect consistent phase differences 
between brain signals

Phase Coupling Measures

Spectral Methods 
- estimated via multi-tapers or 

MAR models
- need to choose sensible taper 

size or model order 

Phase Estimation Methods 
- phase estimated on band-pass 

filtered data
- need to choose sensible freq 

bands

Spatial Leakage 
Correction? Partial?

Coherence No No
Imaginary coherence Yes No

Partial coherence No Yes

Phase Locking Value (PLV) No No
Phase Locking Index (PLI) Yes No

Colclough et al., How reliable are MEG resting-state connectivity metrics? Neuroimage, 2016



 Amplitude Coupling

Envelope Correlation
Envelope Partial Correlation

Phase coupling:  
spectral methods

Coherence
Partial Coherence

PDC

Phase coupling:  
phase estimation methods

PLV
PLI

PSI wPLI

Ewald et al, Biomed Tech, 2013Marzetti et al, NI, 2013

It depends on the context!

MEG: what FC measure should we use?



Partial methods

• Resting-state data from Human Connectome Project,  61 subjects with 3 
sessions each

• Most consistent is amplitude correlations with spatial leakage correction (*AEC)

Colclough et al., How reliable are MEG resting-state connectivity metrics? Neuroimage, 2016

MEG: what FC measure in the resting state?



Compute sliding window correlation network matrices

Sliding window (~10secs)

Network matrix

Time-varying functional connectivity

brain areabr
ai

n 
ar

ea

time



Non-stationary functional connectivity

Sliding window FC in fMRI:

Allen et al. (Cerebral Cortex 2012)

Sliding window FC in MEG:

de Pasquale et al. (PNAS 2010)



BUT: Sliding window correlation requires time window of sufficient length:

brain areabr
ai

n 
ar

ea

Sliding window (~10secs)

Power correlation matrix

Time-varying functional connectivity

Network matrix



Instead pool data over disjoint time periods: 

State 1 State 4State 3State 2

Time-varying functional connectivity



State time courses, x
state 1

state 2

state 3

• Generative model, consisting of:

• state time courses, x - indicating which state the system is in at 
each time point

MEG data, y

Baker,…,Woolrich; eLife (2014)

Hidden Markov Model (HMM)



State time courses, x
state 1

state 2

state 3

• observation model - which predicts the data, y, for a given state

Observation model, p(y|x)
Multivariate Normal distribution

brain area

br
ai

n 
ar

ea

MEG data, y

• Generative model, consisting of:

• state time courses, x - indicating which state the system is in at 
each time point

Baker,…,Woolrich; eLife (2014)

Network matrix 
(one for each 

state)

Hidden Markov Model (HMM)



State time courses, x
state 1

state 2

state 3

• observation model - which predicts the data, y, for a given state

Observation model, p(y|x)
Multivariate Normal distribution

brain area

br
ai

n 
ar

ea

MEG data, y

• Generative model, consisting of:

• state time courses, x - indicating which state the system is in at 
each time point

Baker,…,Woolrich; eLife (2014)

Network matrix 
(one for each 

state)

Hidden Markov Model (HMM)

• Variational Bayes inference



• Can we use the HMM to infer transient brain states from 
resting MEG data?

• Resting state data acquired with CTF 275 channel MEG 
system 

• 9 subjects, 10 minutes eyes open

• Projection to source space using beamforming

• HMM run on amplitude time courses (4 – 30 Hz)

Baker,…,Woolrich; eLife (2014)

HMM on MEG resting state data



Baker,…,Woolrich; eLife (2014)HMM on MEG resting state data



State time courses

Baker,…,Woolrich; eLife (2014)



Baker,…,Woolrich; eLife (2014)

State Transition Probabilities



Baker,…,Woolrich; eLife (2014)

State Transition Probabilities

DAN/DMN anticorrelation in 
fMRI (Fox et al., PNAS, 2005)?



Relationship to EEG microstates?

• Do the HMM states represent source space counterparts of 
EEG microstates?

• Quasi-stable topographies of 
EEG power over the scalp 
that remain stable for 
periods of ~100 ms

• EEG microstates correlate with BOLD RSNs 
(e.g. Musso et al. 2010,  Britz et al., 2010, Yuan et al. 2012)

Van De Ville et al. PNAS (2010)

EEG scalp power



A different HMM observation model

•  Multivariate Normal (MVN) observation model requires use of amplitude time 
courses

• what about working with raw time courses?
• e.g. can we then find time-varying phase locking?

• Instead: Multivariate autoregressive model (MAR) per HMM state

• captures different multi-region spectral properties for each state
• e.g. PSD or coherence

x		=	ΣW	x				+	et i t-i
i=1

p

tMAR model:

Vidaurre et al., Neuroimage, 2016



• 2 left/right MC parcels

• 3 HMM states

• 8 subjects

• raw time-courses (1-50 Hz)

• HMM with MAR observation model

• Self-paced finger tapping task

(Note: HMM is run with no knowledge of task timings)

Are brain states modulated by task?

• Do we see task-related HMM states?



Motor task: spectral properties

rMC lMC

Spectral properties of each HMM state
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Vidaurre et al., Neuroimage, 2016

- significant state-dependent (time-varying) 
power spectra



Motor task: spectral properties

Finger-tap (beta suppression) 
Post-finger-tap (beta rebound) 
Baseline 

time (s)
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Vidaurre et al., Neuroimage, 2016

HMM state time-courses

- significant state-dependent (time-varying) 
power spectra



Motor task: spectral properties

time (s)
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lMc - rMC coherence

Cross-Spectral properties of each HMM state

Vidaurre et al., Neuroimage, 2016

HMM state time-courses

- significant state dependent (time-varying) 
coherence (phase locking)

Finger-tap (beta suppression) 
Post-finger-tap (beta rebound) 
Baseline 
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DMN (s1)

Lower order Visual (s2)

Higher order visual (s7)

Language (s6) 

Salience (s10)  

Sensorimotor (s12) 

-0.4 0.4 1.5-1.5

-0.07 0.07 0.3-0.3-0.3 0.3 1.0-1.0

-0.15 0.12 0.5-0.3
-0.4 0.4 1.5-1.0

-0.3 0.3 1.0-1.0

• HMM on fMRI data
• HMM on BIG data (stochastic learning)

• e.g. HCP resting fMRI (~1000 subjects):

HMM on resting fMRI data
Diego Vidaurre et al., In preparation



HMM on resting fMRI data
Diego Vidaurre et al., In preparation
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pval < 0.01

pval > 0.05
pval < 0.05

Diego Vidaurre et al., In preparation

• Speed of state switching 
(“volatility”) predicts 
behaviour

HMM on resting fMRI data
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• MEG functional connectomes can be 
computed using correlation between power 
time-courses

• phase-locking measures are less sensitive (in 
resting state data)

• beware spatial leakage!

Summary

•MEG and HMM can identify brain states 
switch on ~100ms time-scales, much 
faster than previously shown

•The occurrence of brain states predicts 
task state and behavioural traits
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“Magnetoencephalography: From Signals to Dynamic Cortical Networks”  
edited by Supek and Aine

• Further reading:

http://www.amazon.co.uk/Magnetoencephalography-Signals-Cortical-Networks-Bioengineering/dp/3642330444/ref=sr_1_1?s=books&ie=UTF8&qid=1413820594&sr=1-1&keywords=magnetoencephalography
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