Co-activation mapping and Parcellation

Veronika Müller
Meta-Analyses

• **Topic based meta-analyses:**
 derive brain regions consistently found across studies investigating a specific function

• **Meta-analytical connectivity modeling:**
 derive brain regions consistently found to co-activate with a specific seed region across studies investigating different functions
Meta-analytical connectivity modeling

• Key idea:

 regions showing concurrent activation consistently across studies are functionally connected

→ Meta-analysis as a tool to derive functional connectivity
MACM - Workflow

- Identify all experiments activating the seed region
- Exclude clinical studies, group comparisons, ROI analyses
- Extract all coordinates reported in identified experiments
- Perform a meta-analyses across identified experiments
Co-activation of left M1

Which brain regions are functionally connected to left M1?
Co-activation of left M1

- Identify all experiments activating the seed region

<table>
<thead>
<tr>
<th>BMapID</th>
<th>Year</th>
<th>1st Auth.</th>
<th>Journal</th>
<th>#</th>
<th>Experiment Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>30007</td>
<td>2001</td>
<td>Bodgard A</td>
<td>Neuron</td>
<td>1</td>
<td>Intersection between Active Shape Discrimination vs. Re...</td>
</tr>
<tr>
<td>30013</td>
<td>2001</td>
<td>Cabeza R</td>
<td>Proceedings of the National Academy of Sciences</td>
<td>2</td>
<td>New vs. True/False</td>
</tr>
<tr>
<td>30013</td>
<td>2001</td>
<td>Cabeza R</td>
<td>Proceedings of the National Academy of Sciences</td>
<td>3</td>
<td>True vs. False</td>
</tr>
<tr>
<td>30013</td>
<td>2001</td>
<td>Cabeza R</td>
<td>Proceedings of the National Academy of Sciences</td>
<td>4</td>
<td>False vs. True</td>
</tr>
<tr>
<td>30029</td>
<td>2001</td>
<td>Herath P</td>
<td>Cerebral Cortex</td>
<td>1</td>
<td>Visual - Control</td>
</tr>
<tr>
<td>30029</td>
<td>2001</td>
<td>Herath P</td>
<td>Cerebral Cortex</td>
<td>2</td>
<td>Somatosensory - Control</td>
</tr>
<tr>
<td>30029</td>
<td>2001</td>
<td>Herath P</td>
<td>Cerebral Cortex</td>
<td>3</td>
<td>Dual-Short ISI - Control</td>
</tr>
<tr>
<td>30029</td>
<td>2001</td>
<td>Herath P</td>
<td>Cerebral Cortex</td>
<td>4</td>
<td>Dual-Long ISI - Control</td>
</tr>
<tr>
<td>30029</td>
<td>2001</td>
<td>Herath P</td>
<td>Cerebral Cortex</td>
<td>5</td>
<td>Dual Task - Single Tasks</td>
</tr>
<tr>
<td>30029</td>
<td>2001</td>
<td>Herath P</td>
<td>Cerebral Cortex</td>
<td>6</td>
<td>Dual Short ISI - Long ISI</td>
</tr>
<tr>
<td>30060</td>
<td>1999</td>
<td>Sathian K</td>
<td>Journal of Cognitive Neuroscience</td>
<td>1</td>
<td>Single Target - Absent Target</td>
</tr>
<tr>
<td>30060</td>
<td>1999</td>
<td>Sathian K</td>
<td>Journal of Cognitive Neuroscience</td>
<td>2</td>
<td>Absent Target - Single Target</td>
</tr>
<tr>
<td>30060</td>
<td>1999</td>
<td>Sathian K</td>
<td>Journal of Cognitive Neuroscience</td>
<td>3</td>
<td>Convolution - Single Target</td>
</tr>
</tbody>
</table>

155 experiments activating left M1
Co-activation of left M1

- Extract all coordinates reported in identified experiments

~2200 activation foci of those 155 experiments activating left M1
Co-activation of left M1

- Perform a meta-analyses across identified experiments

Network significantly co-activating with M1 across 155 task-activation studies
Co-activation of left M1

Meta-Analysis on finger tapping

fMRI study on finger tapping
Comparison to resting state functional connectivity

MACM

Resting-State
Connectivity based parcellation

• Identify functional heterogeneous subclusters within a region of interest
• Based on connectivity pattern of each voxel of the region of interest
• Connectivity profiles: DTI, resting-state, MACM
CBP - Workflow

- Perform a MACM analysis for every individual voxel of the seed
 - Connectivity matrix: Connection strength for every voxel of the seed with all voxels of the brain
- Calculation of differences in connectivity between each voxel pair of the seed
- Distance matrix: similarity between all seed voxels
- Clustering: identify a stable clustering solution, using hierarchical or K-mean clustering
CBP of posterior medial frontal Cortex

Are there functionally distinct subregions within the posterior medial frontal cortex seed?
CBP of posterior medial frontal Cortex (pMFC)

- Perform a MACM analysis for every individual voxel of the pMFC seed

 For each voxel:
 - Identification of all experiments activating that voxel
 - Computation of across-experiment convergence of co-activations
CBP of posterior medial frontal Cortex

- Calculation of difference in connectivity between each voxel pair of the seed
CBP of posterior medial frontal Cortex

- Clustering
 voxels of the same cluster show similar co-activation patterns

voxels of different clusters show more different co-activation patterns
CBP of posterior medial frontal Cortex

What are the connectivity differences driving this parcellation?
Summary

• Coordinate-based meta-analyses provide a statistical tool for the objective integration of findings

• Meta-analytic connectivity modelling offers an approach to task-based functional connectivity

• Co-activation based parcellation enables to identify cortical modules in a data-driven fashion
Thank you!