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0. Introduction 
 
In many areas of science and even the lay community, there are growing concerns about the 
reproducibility of published research. From early claims by John Ioannidis in 2005 that “most 
published research findings are false” [Ioannidis2005] to the recent work by the Open Science 
Collaboration, which attempted to replicate 100 psychology studies and succeeded in only 39 
cases [OpenScienceCollaboration2015], there is mounting evidence that scientific results are 
less reliable than widely assumed.  As a result, calls to improve the transparency and 
reproducibility of scientific research have risen in frequency and fervor. 
 
In response to these concerns, the Organization for Human Brain Mapping (OHBM) released 
“OHBM Council Statement on Neuroimaging Research and Data Integrity”2 in June 2014, at the 
same time creating the Committee on Best Practices in Data Analysis and Sharing (COBIDAS).  
The committee was charged with (i) identifying best practices of data analysis and data sharing 
in the brain mapping community, (ii) preparing a white paper organizing and describing these 
practices, and (iii) seeking input from the OHBM community before ultimately (iv) publishing 
these recommendations. 
 
COBIDAS focuses on data analysis and statistical inference procedures because they play an 
essential role in the reliability of scientific results. Brain imaging data is inherently complicated 
because of the many processing steps and a massive number of measured variables. There are 
many different specialised analyses investigators can choose from, and analyses often involve 
cycles of exploration and selective analysis that can bias effect estimates and invalidate 
inference [Kriegeskorte2009]. 
 
Beyond data analysis, COBIDAS also addresses best practices in data sharing. The sharing of 
data can enable reuse, saving costs of data acquisition. In addition, data sharing enables other 
researchers to reproduce results using the same or different analyses, which may reveal errors 
or bring new insights overlooked initially (see, e.g., [LeNoury2015]). There is also evidence that 
data sharing is associated with better statistical reporting practices and stronger empirical 
evidence [Wicherts2011].  In short, data sharing fosters a scientific culture of transparency. 

                                                
1 Please see Appendix 1 for authorship and acknowledgment information. 
2 
http://www.humanbrainmapping.org/files/2014MeetingFiles/6c%20OHBM%20Data%20Integrity%20State
ment.pdf 
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While many recent publications prescribe greater transparency and sharing of data (see, e.g., a 
pair of editorials in Science & Nature [Journals2014,McNutt2014]), such works are general to all 
of science or do not focus on human neuroimaging specifically (though see 
[Poline2012,Poldrack2014]). Thus the purpose of this paper is to elaborate some principles of 
open and reproducible research for the areas of practice relevant to the OHBM community. To 
make these principles practical and usable, we created explicit lists of items to be shared 
(Appendix 2).  
 
Working closely with OHBM Council, this document has been prepared by COBIDAS, released 
to the OHBM community for comment. Members will be given one month to provide comments, 
those comments will be integrated and the revised document will be presented to the 
membership for up/down vote, and finally submitted for publication3.  We note that while best 
practice white papers like this are not uncommon (see, e.g., 
[Alsop2014,Kanal2013,Gilmore2013]), they are generally authored by and represent the 
consensus of a small committee or at most a special-interest section of a larger professional 
body.  Hence we are excited to present this work with the explicit approval of the OHBM 
community. 
 
Approach 
 
There are different responses to the perceived crisis of reproducibility, from simply letting the 
problem `self-correct’ as reviewers and readers become more aware of the problem, to dramatic 
measures like requiring registration of all research hypotheses before data collection.  We take 
the view that the most pragmatic way forward is to increase the transparency of how research 
has been executed.  Such transparency can be accomplished by comprehensive sharing of 
data, research methods and finalized results. This both enables other investigators to reproduce 
findings with the same data, better interrogate the methodology used and, ultimately, makes 
best use of research funding by allowing re-use of data.   
 
The reader may be daunted by the sheer scale and detail of recommendations and checklists in 
this work (Appendix 2).  However we expect that any experienced neuroimaging researcher who 
has read a paper in depth and been frustrated by the inevitable ambiguity or lack of detail will 
appreciate the value of each entry.  We do not intend for these lists to become absolute, 
inflexible requirements for publication. However they are the product of extensive deliberation 
by this panel of experts, and represent what we considered most effective and correct; hence, 
deviations from these practices may warrant explanation. 
 
Scope 
 
While the OHBM community is diverse, including users of a variety of brain imaging modalities, 
for this effort we focus exclusively on MRI. This encompasses a broad range of work, including 

                                                
3 This passage will be updated to account for the actual process that transpires. 
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task-based and task-free functional MRI (fMRI), analyzed voxel-wise and on the surface, but 
inevitably excludes other widely used methods like PET, EEG & MEG.  We found that practice 
in neuroimaging with MR can be broken into seven areas that roughly span the entire enterprise 
of a study: (1) experimental design reporting, (2) image acquisition reporting, (3) preprocessing 
reporting, (4) statistical modeling, (5) results reporting, (6) data sharing, and (7) reproducibility.   
 
Reproducibility has different and conflicting definitions (See Appendix 3), but in this work we 
make the distinction between reproducing results with the same data versus replicating a result 
with different data and possibly methods.  Hence while this this entire work is about maximizing 
replicability, the last section focuses specifically on reproducibility at the analysis-level. 
 
This paper is structured around these areas, and for each we explore both general principles of 
open and reproducible research, as well as specific recommendations in a variety of settings.  
As the respective titles imply, for experimental design, data acquisition and preprocessing, 
studies are so varied that we provide general recommendations without recommending 
particular practices. Thus these sections focus mostly on thorough reporting and little on best 
practice.  In contrast, for statistical modeling there are areas like task fMRI where mature 
methodology allows the clear identification of best practices. Likewise for the areas of data 
sharing, replication and reproducibility we focus exactly on those emerging practices that need 
to become prevalent. 
 
We ask that authors challenge themselves: “If I gave my paper to a colleague, would the text 
and supplementary materials be sufficient to allow them to prepare the same stimuli, acquire 
data with same properties, preprocess in a similar manner and produce the same models and 
types of inferences as in my study?” This is an immense challenge!  The purpose of this work is 
to guide researchers towards this goal and to provide a framework to assess how well a study 
meets this challenge. 
 
1. Experimental Design Reporting 
 
Scope 
In this section we consider all aspects of the planned and actual experimental manipulation of 
the subject.  This includes the type and temporal ordering of stimuli, feedback to be recorded 
and any subject-adaptive aspects of the experiment.  It also encompasses basic information on 
the experiment such as duration, number of subjects used and selection criterion for the 
subjects.  It is impossible to prescribe the “right” design for all experiments, and so instead the 
focus is on the complete reporting of design choices. 
 
General Principles 
For experimental design, the goal of open research requires the reporting of how the subjects 
were identified, selected, and manipulated.   This enables a critical reader to evaluate whether 
the findings will generalize to other populations, and facilitates the efforts of others to reproduce 
and replicate the work. 
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Lexicon of fMRI Design 
While other areas of these guidelines, like MRI physics and statistical modeling, have rather well 
defined terminology, we find there is substantial variation in the use of experimental design 
terms used in fMRI publications.  Thus Box 1 provides terminology that captures typical use in 
the discipline. Since the analysis approach is dependent on the fMRI design, providing accurate 
and consistent characterization of the design will provide greater clarity. 
 
There is often confusion between block and mixed block/event designs [Petersen2012], or block 
designs composed of discrete events.   Thus we recommend reserving the term “block design” 
for paradigms comprised of continuous stimuli (e.g. flashing checkerboard) or unchanging 
stimuli presented for the entire length of a block (generally at least 8 seconds)  All other designs 
comprise variants of event-related designs and must have their timing carefully described. 
 
Box 1.  Terminology 
Session. The experimental session encompasses the time that the subject enters the scanner 
until they leave the scanner.  This will usually include multiple scanning runs with different pulse 
sequences, including structural, diffusion tensor imaging, functional MRI, spectroscopy, etc.  
Run.  A run is a period of temporally continuous data acquisition using a single pulse sequence. 
Condition. A condition is a set of task features that are created to engage a particular mental 
state. 
Trial.  A trial (or alternatively “event”) is a temporally isolated period during which a particular 
condition is presented, or a specific behavior is observed. 
Block. A block (or alternatively “epoch”) is a temporally contiguous period when a subject is 
presented with a particular condition.   
 
Design Optimization 
Especially with an event-related design with multiple conditions, it can be advantageous to 
optimize the timing and order of the events with respect to statistical power, possibly subject to 
counterbalancing and other constraints [Wager2003]. It is essential to specify whether the target 
of optimization is detection power (i.e. ability to identify differences between conditions) or 
estimation efficiency (i.e. ability to estimate the shape of the hemodynamic response) [Liu2001]. 
It is likewise advisable to optimize your designs to minimize the correlation between key 
variables. For example, in model-based or computational fMRI experiments, variables such as 
reward, prediction error and choices will usually be highly correlated unless the design has been 
tuned to minimise this dependence.  Be sure to include all possible covariates in a single 
statistical model to ensure variance is appropriately partitioned between these variables. 
 
Subjects 
Critical to any experiment is the population from which the subjects are sampled.  Be sure to 
note any specific sampling strategies that limited inclusion to a particular group (e.g. laboratory 
members, undergraduates at your university).  This is important for all studies, not just those 
with clinical samples.   
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Take special care with defining a “Normal” vs. “Healthy” sample.  Screening for lifetime 
neurological or psychiatric illness (e.g. as opposed to “current”) could have unintended 
consequences.  For example, in older subjects this could exclude up to 30% of the population 
and this restriction could induce a bias towards a ‘super healthy,’ thus limiting the generalization 
to the population. 
 
Behavioral Performance 
The successful execution of a task is essential for interpreting the cognitive effects of a task.  Be 
sure to report appropriate measures in and out of the scanner, measures that are appropriate 
for the task at hand (e.g. response times, accuracy). For example, provide statistical summaries 
over subjects like mean, range and/or standard deviation.   
 
 
2. Acquisition Reporting 
 
Scope 
This section concerns everything relating to the manner in which the image data is collected on 
each subject.  Again we do not attempt to prescribe best MRI sequences to use, but focus on 
the reporting of acquisition choices. 
 
General Principles 
Research can only be regarded as transparent when the reader of a research report can easily 
find and understand the details of the data acquisition.  This is necessary in order to fully 
interpret results and grasp potential limitations.  For the work to be reproducible, there must be 
sufficient detail conveyed to actually plan a new study, where data collected will have, e.g., 
similar resolution, contrast, and noise properties as the original data.   
 
More so than many sections in this document, MRI acquisition information can be easily 
organized in ‘checklist’ form (see Appendix 2).  Thus in the remainder of this section we only 
briefly review the categories of information that should be conveyed. 
 
Device Information 
The most fundamental aspect of data is the device used to acquire it.  Thus every study using 
MRI must report basic information on the scanner, like make and model, field strength, and 
details of the coil used, etc.   
 
Acquisition-Specific Information 
Each acquisition is described by a variety of parameters that determine the pulse sequence, the 
field of view, resolution, etc. For example, image type (gradient echo, spin echo, with EPI or 
spiral trajectories; TE, TR, flip angle, field of view), parallel imaging parameters, use of field 
maps, and acquisition orientation are all critical information. Further details are needed for 
functional acquisitions (e.g. scans per session, discarded dummy scans) and diffusion 
acquisitions (e.g. number of directions and averages and magnitude and number of b-values). 
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Format for sharing 
While there is some overlap with Section 6. Data Sharing, there are sufficient manufacturer- and 
even model-specific details that we consider here related to data format.  When providing 
acquisition information in a manuscript keep in mind that readers may use a different make of 
scanner, and thus you should minimize the use of vendor-specific terminology. To provide 
comprehensive acquisition detail we recommend exporting vendor-specific protocol definitions 
or “exam cards” and provide them as supplementary material.  
 
When primary image data are being shared, a file format should be chosen that provides 
detailed information on the respective acquisition parameters (e.g. DICOM). If it is impractical to 
share the primary image data in such a form, retain as much information about the original data 
as possible (e.g. via NIfTI header extensions, or “sidecar” files). Take care, though, of sensitive 
protected personal information in the acquisition metadata and use appropriate anonymization 
procedures before sharing (see Section 6. Data Sharing).  
 
3. Preprocessing Reporting 
 
Scope 
This section concerns the extensive adjustments and “denoising” steps neuroimaging data 
require before useful information can be extracted.  In fMRI, the two most prominent of these 
preprocessing steps are head-motion correction and intersubject registration (i.e., spatial 
normalisation), but there are many others. In diffusion imaging, motion correction, eddy current 
correction, skull stripping, and fitting of tensors (least squares, ROBUST, etc.) are the most 
common.    
 
General Principles 
As with other areas of practice, openness here requires authors to clearly detail each 
manipulation done to the data before a statistical or predictive model is fit.  This is also essential 
for reproducibility, as the exact outcome of preprocessing is dependent on the exact steps, their 
order and the particular software used.   
 
Software Issues 
Software versions. Different tools implementing the same methodological pipeline, or different 
versions of the same tool, may produce different results [Gronenschild2012]. Thus ensure that 
the exact name, version, and URL of all the tools involved in the analysis are accurately 
reported. It is essential to provide not just the major version number (e.g., SPM12, or FSL 5.0) 
but indicate the exact version (e.g. SPM12 revision 6225, or FSL 5.0.8). Consider adding a 
Research Resource Identifier (RRID4) [Bandrowski2015] citation for each tool used. RRID’s 
index everything from software to mouse strains, and provide a consistent and searchable 
reference. 
 

                                                
4 http://www.force11.org/group/resource-identification-initiative 

https://paperpile.com/c/O34o03/xnf5
https://paperpile.com/c/O34o03/xnf5
https://paperpile.com/c/O34o03/xnf5
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In-house pipelines & software. When using a combination of software tools, be sure to detail the 
different functions utilized from each tool (e.g., SPM’s realign tool followed by FreeSurfer’s 
boundary-based registration; see Reproducibility section for more on pipelines). In-house 
software should be described in detail, giving explicit details (or reference to peer-reviewed 
citation with such details) for any processing steps/operations carried out. Public release of in-
house software through an open code repository is strongly recommended (e.g. Bitbucket or 
Github).  
 
Quality control. Quality control criteria, such as visual inspection and automated checks (e.g., 
motion parameters), should be specified. If automated checks are considered, metric and 
criteria thresholds should be provided. If data has been excluded, i.e., due to scrubbing or other 
denoising of fMRI time series or removal of slices or volumes in diffusion imaging data, this 
should be reported. 
 
Ordering of steps. The ordering of preprocessing steps (e.g., slice time correction before motion 
correction) should be explicitly stated.  
 
Handling of exceptional data. Sometimes individual subjects will have problems, e.g. with brain 
extraction or intersubject registration.  Any subjects that require unique preprocessing 
operations or settings should be justified and explained clearly, including the number of subjects 
in each group for case-control studies. 
  
4. Statistical Modeling & Inference 
 
Scope 
This section covers the general process of extracting results from data, distilling down vast 
datasets to meaningful, interpretable summaries. Usually this consists of model fitting followed 
by statistical inference or prediction. Models relate the observable data to unobservable 
parameters, while inference quantifies the uncertainty in the estimated parameter values, 
including hypothesis tests of whether an observed effect is distinguishable from chance 
variation.  Inference can also be seen as part of making predictions about unseen data, from the 
same or different subjects. 
 
General Principles 
For statistical modeling and inference, the guiding principle of openness dictates that the reader 
of published work can readily understand what statistical model was used to draw the 
conclusions of the paper.  Whether accidental or intentional (i.e. for brevity), omission of 
methodological details needed to reproduce the analyses violates these principles. For maximal 
clarity, be sure to describe all data manipulation and modeling in the methods section 
[Gopen1990].  For example, the list of contrasts and small-volume corrections should be fully 
described in the methods section, whether or not it is also summarised in the results section. 
 
Software 
See the previous section for details on how to describe the exact software and pipeline used. 
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Mass Univariate Modelling 
A simple univariate model fit to each voxel or surface element is known as a mass univariate 
modelling approach, and is an essential tool for everything from task fMRI, structural MRI 
measures like Voxel Based Morphometry, scalar diffusion measures like Fractional Anisotropy 
or even resting state fMRI, when measured with low frequency variance (see Other Resting-
State Analyses below).  Regardless of the type of data, a mass-univariate linear model is 
specified by five types of information: Dependent variables, independent variables, model, 
estimation method and inference method (where inference refers to quantification of uncertainty 
of estimated parameters and hypothesis testing).   
 
While the dependent variable (or response) may be unambiguous (e.g. for T2* BOLD), be sure 
to identify it in any nonstandard analysis. Itemize each independent variable in each model 
used.  In a first level fMRI model, this includes the usual condition effects, as well as motion 
regressors added to explain nuisance variation.  In a second level or group model, independent 
variables include the group assignment (e.g. patient vs. control) or other between-subject 
effects that may or may not be of interest (e.g. age or sex).  Often complicated contrasts, linear 
combinations of independent variables, are needed to interrogate the experimental effect of 
interest.  
 
While software may make the model and estimation method seem ‘automatic’, a short 
description is needed for a complete scientific report.  See Appendix 4 for examples of short 
descriptions of commonly used task fMRI models. Beyond the mass univariate model, there is 
growing use of other types of models, including local multivariate, whole-brain multivariate, etc. 
Regardless of the model, be sure to note the essential details of the estimation procedure 
 
The inference method is used to distinguish true effects from background noise, and is a crucial 
final step.  In brain imaging, inference usually amounts to a thresholding procedure, though if 
ROIs are used, it could also include computation of confidence intervals. Be sure to clearly and 
separately state both the type of inference and the manner of multiple-testing correction.  For 
example, the inference method description “5% cluster wise inference” doesn’t specify the 
cluster-forming threshold nor the multiple-testing correction method (e.g. familywise vs. false 
discovery rate). Clearly describe the volume, sub-volume, or surface domain for which multiple-
testing correction has been performed. 
 
Connectivity Analyses 
Functional and effective connectivity encompass a broad range of methods, from data-driven 
multivariate or clustering methods on high resolution voxel-wise data, to highly structured 
physiological-based models on a small number of regions.  Methods are still evolving for 
resting-state fMRI in particular, but careful execution of a study requires considering topics 
similar to task fMRI modeling: response variables, model, estimation method and inference 
method.   
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The goal of most connectivity analyses is to understand the relationships among multiple 
response (dependent) variables. These variables can be defined by regions-of-interest (ROIs), 
in which case be sure to report the number of ROIs and how the ROIs are defined (e.g. citable 
anatomical atlas; auxiliary fMRI experiments). State whether analyses were carried out as a 
voxelwise whole-brain analysis or by using cortical surfaces or CIFTI ‘grayordinates’ (surface 
vertices + subcortical gray matter voxels [Glasser2013]). For seed-based analyses, or small-
scale (e.g. Bayes Net) methods, provide the rationale for selecting the particular ROIs.  
Carefully describe how time series were attributed to each ROI (e.g. averaging, median, or 
eigenvariate), and detail any additional (temporal or spatial) filtering or transformations (e.g. into 
wavelet coefficients) used, or nuisance variables (e.g. motion parameters) ‘pre-regressed’ out of 
the data. 
 
A number of exploratory multivariate methods are used to understand high-dimensional fMRI 
data in a lower dimensional space.  These include Principal Component Analysis, 
Multidimensional Scaling, Self Organizing Maps, and Independent Component Analysis (ICA), 
of which ICA is probably the most widely used.  For any such method report the model variant 
(e.g. spatial or temporal ICA), the estimation method (i.e. algorithm) and the number of 
dimensions or components used and, crucially, how this number was selected.  ICA fitting and 
interpretation depends on choices about scaling, both to the data before fitting and as a 
constraint between spatial and temporal components; describe the type of scaling applied to 
data and extracted components. When considering multiple components, report how the 
components were sorted and the use of any post-hoc task regression model (with task model 
details; see above).    
 
As any nuisance variation jointly influencing multiple voxels/regions can be mistaken for brain 
connectivity, it is essential that careful preprocessing has been applied, including artifact 
removal (See Section 3).  
 
For many connectivity analyses the model is nothing more than the summary measure of 
dependence, e.g. Pearson’s (full) correlation, partial correlation, mutual information, etc.  
However, be sure to note any further transformations (e.g. Fisher’s Z-transform, regularization 
of partial correlation estimates).  For seed-based analyses, describe the voxel-wise statistic or 
regression model (and other covariates) used. For regression-based group ICA analyses (“dual 
regression”, or “PCA-based back-reconstruction”), clearly describe how the per-subject images 
are created.  As with task-fMRI, any group analysis should be described in terms of dependent 
variables, independent variables, model, estimation method, and inference method.  For graph 
analysis methods based on binary connection matrices, state how thresholding was done and 
consider the sensitivity of your results to the particular threshold used.  
 
For functional connectivity, inference typically focuses on making statements comparing two or 
more groups of subjects or assessing the impact of a covariate.  Ensure that it is clear what is 
the response being fed into the group model. For some connectivity analyses, like Structural 
Equation Modelling or Dynamic Causal Modelling, the inference concerns selecting among a set 
models. Be sure to justify and enumerate the models considered and how they were compared; 
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describe how evidence for model selection was aggregated over multiple subjects. Discuss the 
prior distributions used and their impact on the result. For graph-based analyses, detail the 
construction of adjacency matrices (i.e. what was binarized and how), or if using weighted 
measures, how the weights are computed. 
 
Other Resting-State Analyses 
Analysis of resting state data need not incorporate connectivity.  Methods like Amplitude of Low 
Frequency Fluctuations (ALFF) [Zang2007] and fractional ALFF (fALFF) [Zou2008] summarise 
brain activity with absolute (ALFF) or relative (fALFF) BOLD variance, and Regional 
Homogeneity (ReHo) [Zhang2004] measures local consistency of signals.  These methods 
produce a map per subject that can be analyzed with a mass univariate model (see above). 
 
Multivariate Modelling & Predictive Analysis 
Predictive methods focus on estimating an outcome for each experimental trial, block or subject, 
often using multivariate models.  Multivariate methods exploit dependencies between many 
variables to overcome the limitations of mass univariate models, often providing better 
explanatory or predictive models.  In brain imaging, predictive methods are often called 
decoding or multi-voxel pattern analyses [Norman2006]; an example of a multivariate analysis is 
representational similarity analysis [Kriegeskorte2008] or search-light mapping  
[Kriegeskorte2006]. A complete description should include details of the following: Target 
values, features, predictive model, and training method. 
 
The target values are the outcomes or values to be predicted, which may be discrete or 
continuous.  It should be made clear exactly what is being predicted, and what are the relative 
frequencies of this variable (e.g. proportions in each group, or a histogram for a continuous 
target).   
 
The features are the variables used to create the prediction, and often are not the raw data 
themselves but derived quantities. In addition, some features may be discarded in the process 
of feature selection.  It is essential that the analysis pipeline is described in sufficient detail to 
capture the definition of each element of the feature, any feature selection that precedes model-
training, and any feature transformations. 
 
The predictive model is the type of method used to map features to targets.  Typical examples 
include linear discriminant analysis, support vector machines or logistic regression.  It is distinct 
from the algorithm or training procedure used to optimize the parameters of the method (i.e. 
usually to minimize prediction error on held-out data).  Be sure to clearly identify the model used 
and (if used) the specific machine learning library used. 
 
Finally, the training method is perhaps the most important facet of a predictive analysis, and 
comprises the algorithm used to build a working classifier.  Training may be nothing more than 
fitting a regression model, but more typically consists of a complex algorithm that depends on 
the tuning of hyper-parameters. Clearly specify the algorithm used, what objective function was 
optimized, how the algorithm’s convergence was established (for iterative methods), and any 
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post-processing of the fitted model. Be sure to clearly describe how hyper-parameters were 
estimated, including the choice of the hyper-parameter grid, figure-of-merit optimized, the type 
of validation scheme used (e.g. cross-validation), and the use of an averaging strategy to 
produce a final classifier.  In particular, identify which hyper-tuning parameters were optimized 
outside vs. inside a cross-validation loop—the reported accuracy is indeed valid only if all hyper-
parameters are optimized inside the loop as part of a nested cross-validation procedure or 
chosen and fixed a priori.   
 
5. Results Reporting 
 
Scope 
The reporting of statistical results is inextricably tied to the statistical modeling and inference 
procedures of the previous section. However, a scientific investigation invariably requires 
dozens of analyses, inferences and views of the data, and thus any published report typically 
contains a subset of all output of every statistical procedure completed. Thus we feel that results 
reporting deserves its own section here, providing guidance on how authors should select and 
present the outcomes of the modeling process. 
 
General Principles 
Transparency of published research requires that the reader can easily interpret the results 
shown and, crucially, what results were considered but then not shown. Unreported selective 
inference inflates the significance of results shown and will stymie efforts to replicate a finding. 
 
Mass Univariate Modelling 
There are four general classes of information that need to be carefully described: Effects tested, 
tables of brain coordinates, thresholded maps, parcellated maps, and extracted data.   
 
A complete itemization of the effects tested must be presented, identifying the subset that are 
presented. This is necessary to understand the true magnitude of the multiplicity involved and 
the potential danger of selection biases. For example, if a study has a multifaceted design 
allowing various main and interaction effects to be considered, effects tested and omitted should 
be enumerated, including references to previously published results on the current dataset.  A 
full sense of how extensively the data has been explored is needed for the reader to understand 
the strength of the results. 
 
Tables of coordinates historically have often been the only quantification of the results and 
should be created with care.  Each table or sub-portion of a table should be clearly labeled as to 
what contrast / effect it refers to, and should have columns for: Anatomical region, X-Y-Z 
coordinate, T/Z/F statistic, and the P-value on which inference is based (e.g. voxel-wise FWE 
corrected P; or cluster-wise FDR corrected P); if cluster-wise inference is used, the cluster 
statistic (e.g. size, mass, etc) should be included. Avoid having multiple columns of results, e.g. 
multiple XYZ columns, one for increases, one for decreases, or one for left hemisphere, one for 
right hemisphere. The table caption should clearly state (even if in repetition of the body text) 
the significance criterion used to obtain these coordinates, and whether they represent a subset 
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of all such significant results (e.g. all findings from whole-brain significance, or just those in a 
selected anatomical region).  If T or F statistics are listed, supply the degrees of freedom. 
Finally, the space (i.e., Talairach, MNI) of the coordinate system should be noted. 
 
The thresholded map figures perhaps garner the most attention by readers and should be 
carefully described.  In the figure caption clearly state the type of inference and the correction 
method (e.g. “5% FWE cluster size inference with P=0.001 cluster-forming threshold”), and the 
form of any sub-volume corrections applied.  For small volume or surface ROI corrections, 
specify whether or not the ROI was identified prior to any data analysis and how it was defined. 
Always annotate threshold maps with a color bar for the statistic values; when showing multiple 
maps, use a common color bar when feasible. 
 
Extracted data from images aids the interpretation of the complex imaging results, and is 
presented as effect magnitudes (in normalized “effect sizes” or percent change), bar plots, or 
scatter plots. Computed from a single voxel/vertex, or an average or principal component of a 
set of voxels/vertices, they however present a great risk for “circularity” [Vul2009; 
Kriegeskorte2009]. Specifically, when the voxels summarized are selected on the basis of a 
statistic map, they are biased estimates of the effect that map describes.  Thus it is essential 
that every extracted summary clearly address the circularity problem; e.g. “derived from 
independently-formed ROI”, or “values based on voxels in a significant cluster and are 
susceptible to selection bias”. 
 
Functional Connectivity 
The critical issues when reporting functional connectivity differ between voxel-wise, seed-based 
and structured models. 
 
When reporting multivariate decomposition methods like PCA, ICA, MDS or SOM, state how the 
number of components were selected.  With either ICA or seed-based analyses, when 
conducting inference on multiple networks, be sure to account for multiplicity when searching 
over the networks.  For example, if testing for patient vs. control differences in the default mode, 
attentional, visual and motor networks, the inference must account for not only the voxels within 
networks, but additionally for searching four IC maps for significance. 
 
 
Multivariate Modelling & Predictive Analysis 
While it may appear that predictive analyses are trivial to report (“Accuracy was X%”), there are 
in fact two broad types of information to convey: Evaluation & interpretation.  
 
Evaluation refers to the assessment of a fitted classifier on out-of-sample data. As shown in the 
tabular listing, there are several measures of classifier performance that should be reported 
aside from overall accuracy (percentage of correct predictions).  For example, when group sizes 
are unequal, be sure to also report average or balanced accuracy (accuracy per group, 
averaged).  
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Do not make claims of “above chance accuracy” unless based on confidence intervals or some 
formal test, ideally a permutation test [Combrisson2015].  For regression report prediction R2, 
though be aware this may be negative when the explained variance is low (but is not 
necessarily truly zero).  Avoid using a correlation coefficient as an evaluation metric (computed 
between actual and held-out-predicted continuous values) as this is susceptible to bias 
[Hastie2011, Ch7].  
 
Interpretation of the fitted classifier allows potential insights to brain function or structure that 
drives prediction, though must be done with care (see e.g. [Haufe2014]).  In particular, be sure 
not to over-interpret whole brain weight maps as localizing the source of predictive accuracy, as 
the very multivariate nature of the method means it is impossible to isolate a single region as 
being responsible for classification. Voxels or vertices containing significant information may 
receive small or zero weight if a regularisation penalty is used in fitting. Conversely, 
voxels/vertices with high absolute weight may not contain any predictive signal at all, but may 
serve to cancel correlated noise, thus improving classifier performance. Mapping procedures 
that conduct the same analysis at every location, such as multivariate searchlight mapping, can 
identify regions that are predictive in isolation of activity elsewhere and thus complement whole-
brain classification methods. 
 
6. Data Sharing 
While previous sections have largely described good practice that is (more or less) prevalent in 
the community, this and the next section concerns practices that are currently scarce. Thus 
these sections are necessarily more prescriptive, providing explicit suggestions on ways to 
change how we conduct studies, meeting the challenges of making neuroimaging science as 
transparent and reproducible as possible. 
 
Scope 
Neuroimaging, relative to other disciplines like genetics and bioinformatics, has lagged behind in 
widespread acceptance of data sharing. This section outlines the practicalities of sharing of data 
and results, including issues related to the use of data repositories and how to convey details of 
retrieval.  
 
General Principles 
Data sharing is one of the cornerstones of open research, permitting others to reproduce the 
results of a study and maximizing the value of research funds already spent.  However, to fully 
realize this value, data should not just be “available on request”, but shared in a data repository 
that is well organized, properly documented, easily searchable and sufficiently resourced as to 
have good prospects for longevity. There are four elements to a successful data sharing effort: 
Planning, databases, documentation, & ethics. 
 
Planning for Sharing 
Data sharing is most onerous when done as an afterthought [Halchenko2015]. Instead, if data 
sharing is considered when a study is planned and initiated as part of a complete data 
management plan, the additional effort required will be minimal. A key to data sharing is the use 
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of a strict naming structure for files and directories. This regularity brings a number of benefits, 
including greater ease in finding errors and anomalies.  But most valuable, organized data 
facilitates extensive use of scripting and automation, reducing time needed for analysis and QC.  
Best practice is to use an established data structure; for example, the recently developed BIDS 
standard5 provides a detailed directory hierarchy for images and a system of plain text files for 
key information about a study’s data.  This structure is used by OpenfMRI6, making it easy to 
upload data to that repository. Whatever the system, arranging your data in a regular structure 
will simplify all efforts to manipulate and—specifically—share your data.  
 
Another essential decision to make early in a study is exactly what kinds of data are to be 
shared. The exact data shared must be consistent with the ethics of the study (see below, 
Ethics). But once suitably anonymised, there are still the various versions of image data to 
choose from: DICOM files from the scanner for each subject; “raw” converted data (e.g. NIFTI), 
free of any preprocessing; ready-to-model fMRI data for each subject, having all of the basic 
processing completed; per-subject summary maps, e.g. one effect/contrast image per subject in 
fMRI; per-study statistic maps. Sharing raw data gives more options to other users, while 
sharing preprocessed images makes it easier for others to immediately start analyzing your 
data.  Finally, sharing of extensively processed data, such as statistical maps and underlying 
structural data (e.g., volumes and cortical surfaces of individuals and/or group averages) can be 
very valuable, enabling readers of an article to access much more information than can be 
conveyed in a static image in a publication. 
 
Decide at the outset with whom the data is to be shared and at what stage, as it may be useful 
to share data with collaborators prior to publication, then more freely after publication.  We 
support the widest sharing of data possible, but in certain (e.g. clinical) circumstances this may 
not be possible.  Again consistent with ethics, have a data management plan that clearly 
specifies whether data can be freely distributed, or under exactly what constraints it can be 
shared.  For example, in large-scale databases, data may be freely shared within a project, with 
some limits to other related projects, or with yet more constraints to the general public. 
Establishing these limits before a single subject is scanned will save many headaches down the 
road. Instead of setting the exact rules for data use yourself, consider using an established 
license, like from the Creative Commons7 or Open Data Commons8, saving yourself time and 
making the terms of use clear to users.   
 
For large-scale, multi-site studies, the greater effort put into harmonization of experimental 
paradigms, data acquisition, analysis and modeling, the easier it will be to amalgamate the data 
later.  If separate databases are used, then an ontological standardization is important, 
establishing how to map data fields and the data dictionaries between sites.  
 

                                                
5 http://bids.neuroimaging.io 
6 http://openfmri.org 
7 http://creativecommons.org/licenses/ 
8 http://opendatacommons.org/licenses/ 
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One last facet to consider is the sharing of data analysis pipelines scripts and any provenance 
traces. These are generally free of ethical concerns (unless protected information like subject 
names creeps into a script!) and there is great value in allowing others to recreate your results 
and apply your methods to new data. This is discussed in greater detail below (see 
Documentation). 
 
In short, no matter what is shared it is essential is that data sharing, as a part of a data 
management plan, be considered from the outset of a study.  Without such planning, in a jumble 
of folders and after a graduate student or post-doc has moved on, data can effectively be lost. 
 
Databases 
While a highly organized arrangement of data in a folder hierarchy is prerequisite for good data 
management, it does not in itself constitute a database. A database, in addition to organizing 
data, is searchable and provides access controls.  Databases for imaging data may include non-
imaging data and allow direct entry of data. There are a number of imaging-oriented databases, 
ranging in scale, complexity, features and, crucially, effort needed to install and maintain them.  
As individual users are unlikely (and not advised!) to create imaging databases, we review the 
considerations when choosing a database.    
 
Consider access control options, and exactly who and which types of users should be allowed 
to enter data, and access the data.  There may be some types of data (e.g. sensitive behavioral 
tests or essential personal information) that require special, restricted access. The ability to 
modify existing data should be highly restricted, ideally with a form of audit control that records 
the nature of the changes.    
 
Comprehensive search functionality is important, especially for large scale, multi-project 
databases.  Useful features include being able to select subsets of data of interest, e.g. finding 
subjects that have a certain age range, IQ and a clinical diagnosis, with two different imaging 
modalities.  Once a selection is made, some systems may only let you download data, while 
others may provide quick visualization or extensive analysis options.  Especially when working 
with large repositories, the availability of a scriptable query interface can be handy for complex 
queries.   
 
Consider the ability of a system to handle heterogeneous data.  Most imaging databases will 
accommodate the most basic demographic information, but may not accept more than one 
modality (e.g. both MRI and EEG) or other types of essential data, like clinical evaluations or 
batteries of psychological tests.  Consider carefully all the data that comprises your studies and 
whether it can all be stored in one unified system.  Some systems allow staff to directly enter 
subject information, and even conduct batteries of psychological tests on subjects, eliminating 
double entry and risk of errors.  
 
Finally, assess the complexity of installation and maintenance of a system.  At a single site, the 
system must be easy to install and maintain, while a database for a multi-site study will 
necessary be more complex and require adequate expertise to manage.  As part of this, ensure 
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there is detailed documentation for maintainers, as well for end users on how to navigate the 
resource. 
 
Now, with a variety of mature imaging databases available, building a de novo home-grown 
database cannot be recommended.  For example, IDA [Mueller2005], XNAT [Marcus2007], 
COINS [Scott2011], and LORIS [Das2012] are four established and well-resourced systems for 
longitudinal, multi-modal, web-based data storage and querying, with proper user control. Some 
of these tools interface to high performance computing platforms for mass processing (e.g. IDA 
to LONI [Dinov2009] or LORIS to CBRAIN [Sherif2014]) and can be an important element in 
reproducibility (see Reproducibility section).   
 
While these established databases are becoming easier to install and maintain, we 
acknowledge that in low resource environments they may be impractical.  In these settings, the 
use of highly structured storage of imaging data (see BIDS above) and extensive use of 
scripting is the best approach, and facilitates a transition later to a formal database. In most 
research environments, however, informatics support should be regarded as a necessity and 
funded accordingly, if for no other reason to obtain the maximal value of the data collected, now 
and for years to come.  
 
Documentation 
Even an organized and searchable database is of no use, unless users have access to 
information describing what is actually stored in the repository.  Clear documentation on the 
studies within a repository, the data acquisition and experimental paradigm detail are all 
examples of information that are needed to make use of information in a database.  If processed 
data and results are stored, details on the preprocessing and models fit are also essential.  The 
documentation should be written for a wide audience, including members from multiple 
disciplines.  The extensive documentation for the Human Connectome Project9 provides a great 
example of how to describe data (unprocessed and minimally preprocessed) as well as the 
acquisition and preprocessing methods in a large and complex database. 
 
A form of self-documentation is provenance, i.e. recording exactly what happened to data 
through preprocessing and modeling.  These “provenance traces” can help track-down 
problems and provide invaluable reference for others who want to replicate previous studies.  
While provenance is not usually recorded, the AFNI BRIK10 and MINC11 formats have forms of 
provenance tracking, and the NIDM project12 is developing a framework to save this information 
in a standard format. Pipeline software like LONI Pipeline13 or nipype14 explicitly provide such 
provenance records. 
 

                                                
9 http://humanconnectome.org/documentation 
10 http://afni.nimh.nih.gov/afni/doc/faq/39 
11 http://www.bic.mni.mcgill.ca/software/minc/ 
12 http://nidm.nidash.org 
13 http://pipeline.bmap.ucla.edu 
14 http://nipy.org/nipype/ 
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Ethics 
Data sharing can be difficult if ethics and consent documents are not suitably crafted.  While in 
the United States de-identified data is not “protected health information” and should be able to 
be shared, regulations differ between countries and institutions and are subject to change. 
Hence be sure to consult your ethics or institutional review board before acquiring data with the 
intent of sharing, as well as before releasing data.  The Open Brain Consent project15 can also 
be of use, providing sample forms written specifically to account for later sharing of data.  Some 
level of anonymization will be required, ensuring all sensitive personal information is withheld or 
suitably coarsened or obscured (e.g. reporting only age in years instead of birth date), and/or 
applying a “de-facing” procedure to anatomical MRI images.  Careful ‘scrubbing’ (e.g. removing 
subject names from DICOM files, or analysis pathnames) is required to ensure no personal 
information is discussed.  
 
7. Reproducibility 
 
We make the distinction articulated by [Peng2011] and others that reproducible results can be 
recreated by others using the same data and software as shared by the original authors, while a 
replication is the traditional scientific goal of independent researchers using independent data 
and possibly distinct methods to arrive at the same scientific conclusion (see Appendix 1). While 
some have argued that reproducibility is secondary, and that “one should replicate the result not 
the experiment” [Drummond2009], recent failures to replicate high-impact results and 
occasional but acutely concerning examples of outright fraud have made the case for the 
importance of reproducibility. 
 
Scope 
We focus on analysis-level replication, i.e. the ability to reproduce the results of a well-defined 
analysis using the same data.  All of the recommendations of this paper are in the service of the 
clear, unambiguous reporting of design, data and analysis workflow. To further make your 
analysis as reproducible as possible, ensure it is documented, archived and citable. 
 
Documentation 
As detailed in the Preprocessing Reporting section above, be sure to cite the software and 
computational infrastructure used to obtain your results. 
 
When the analysis involves multiple tools, some formal description of the workflow connecting 
these tools should be provided. Tools such as BrainVISA [Cointepas2001], LONI pipeline 
[Rex2003], NiPype [Gorgolewski2011], PSOM [Bellec2012], and SPM batch [Penny2006] may 
help structure and describe workflows. myExperiment [DeRoure2009] can be used to share and 
run workflows online (see for instance this FSL fMRI workflow from the LONI Pipeline 
environment16). 
 

                                                
15 http://open-brain-consent.readthedocs.org 
16 http://www.myexperiment.org/workflows/2048 

https://paperpile.com/c/O34o03/20oG
https://paperpile.com/c/O34o03/20oG
https://paperpile.com/c/O34o03/20oG
https://paperpile.com/c/O34o03/H3ao
https://paperpile.com/c/O34o03/H3ao
https://paperpile.com/c/O34o03/H3ao
https://paperpile.com/c/O34o03/WyBg
https://paperpile.com/c/O34o03/WyBg
https://paperpile.com/c/O34o03/WyBg
https://paperpile.com/c/O34o03/FqxW
https://paperpile.com/c/O34o03/FqxW
https://paperpile.com/c/O34o03/FqxW
https://paperpile.com/c/O34o03/a1uh
https://paperpile.com/c/O34o03/a1uh
https://paperpile.com/c/O34o03/Q0jL
https://paperpile.com/c/O34o03/Q0jL
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Any additional information on provenance will aid in efforts to reproduce your analysis.  For 
example, tools like NiPype & the LONI Pipeline Processing environment [MacKenzie-
Graham2008] records an exact “provenance trace” of the analysis, and the MINC17 and AFNI 
BRIK formats also store histories of analysis commands used to create a file. The Neuroimaging 
Data Model (NIDM [Keator2013]) is being actively developed to describe all steps of a data 
analysis in analysis-program-independent fashion.  
 
Even when the data and workflow used in an analysis are properly documented, it may not be 
easy to reproduce the exact same data, for instance figures, as presented in a publication. 
Consider the use of literate programming tools such as iPython notebooks (used for instance in 
[Waskom2014]), or R-based Sweave [Leisch2002]. Another example involves ‘scene’ files that 
store all of the information (including links to the associated data files) that is needed to exactly 
reproduce a published figure.  Currently, scene files are supported by  the Connectome 
Workbench [Marcus2013] and Caret [VanEssen2001] software platforms.  
 
Archiving 
The analysis documentation should be archived in a long-term accessible location on the web. 
Of course, even with excellent documentation resources may disappear, become inaccessible, 
or change, further challenging reproducibility.  
 
Open-source software is more likely to be available long term and is thus recommended.  
Whenever available, report on the availability of tools in repositories such as the INCF software 
center18, the NITRC Resource Registry19, or in software suites such as NeuroDebian 
[Halchenko2012] or Lin4Neuro [Nemoto2011].   
 
The best way to facilitate reproducibility is to create and release a virtual machine (VM) or a 
container with the software and pipelines used in the analysis. A good starting point is the 
NeuroDebian VM20 that can be further customized for a particular use case. Examples of other  
practical solutions that demonstrate this approach are the Nipype vagrant box and the NITRC 
Computational Environment21 (used e.g. in [Ziegler2014]), both NeuroDebian-based VMs, and 
Niak22 (available on DockerHub23).  Of course licensing may prevent creating comprehensive 
VM.  With Matlab code, consider using the Matlab Compiler to create standalone applications or 
free alternatives such as GNU Octave.  
 
Citation 

                                                
17 http://en.wikibooks.org/wiki/MINC/Reference/MINC2.0_Users_Guide 
18 http://software.incf.org 
19 http://www.nitrc.org 
20 http://neuro.debian.net (also available on Dockerhub: https://hub.docker.com/_/neurodebian) 
21 http://www.nitrc.org/plugins/mwiki/index.php/nitrc:User_Guide_-
_NITRC_Computational_Environment 
22 http://simexp.github.io/niak 
23 http://hub.docker.com 

https://paperpile.com/c/O34o03/czRd
https://paperpile.com/c/O34o03/czRd
https://paperpile.com/c/O34o03/czRd
https://paperpile.com/c/O34o03/fIzH
https://paperpile.com/c/O34o03/fIzH
https://paperpile.com/c/O34o03/fIzH
https://paperpile.com/c/O34o03/uOVU
https://paperpile.com/c/O34o03/uOVU
https://paperpile.com/c/O34o03/uOVU
https://paperpile.com/c/O34o03/Hcze
https://paperpile.com/c/O34o03/Hcze
https://paperpile.com/c/O34o03/Hcze
https://paperpile.com/c/O34o03/gwAE
https://paperpile.com/c/O34o03/gwAE
https://paperpile.com/c/O34o03/gwAE
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URLs tend to “decay” over time, making them inappropriate to cite online material permanently. 
Instead, Digital Object Identifiers (DOIs) provide a persistent way to index digital data. 
Various platforms are now available to create DOIs to your data and workflows, such as 
Zenodo24, figshare25 or DataCite26 (see examples in [Tustison2014] &  [Soelter2014]). 
 
8. Conclusions 
 
In this work we have attempted to create an extensive (but not comprehensive) overview of 
reporting practices and, to a lesser extent, the practices themselves needed to maximize the 
openness and replicability of neuroimaging research.  We have focused exclusively on MRI, but 
many of the suggestions and guidelines will easily translate to other areas of neuroimaging and 
related fields.   
 
This document is inevitably dated by the current technology and means of reporting scientific 
results.  As these evolve this document will need to be updated and revised.  Updates and the 
current version of these guidelines will be available at 
http://www.humanbrainmapping.org/cobidas27. 
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Appendix 1: COBIDAS Membership & Acknowledgements. 
 
Upon creating COBIDAS in June 2014, Dr. Nichols was named as chair and subsequently 
invited nominations from the OHBM membership.  From over 100 nominees Dr. Nichols 
selected a dozen experts from the membership that covered reflected the diversity of OHBM, 
with the final list approved by Council.  The different constituencies considered included: 
Researchers focusing in cognitive applications, clinical applications, methods and database 
developers; different geographic areas; gender; representation of junior researchers; and, to 
facilitate communication within OHBM leadership, at least one member from Council and one 
member from the OHBM Program Committee.   
 
The full list of members is as follows (in alphabetical order). 

Simon Eickhoff, Department of Clinical Neuroscience and Medical Psychology 
Heinrich-Heine University Düsseldorf, Düsseldorf, Germany. 
Alan Evans, Montreal Neurological Institute, 
McGill University, Montreal, Canada. 
Michael Hanke, Otto-von-Guericke-University Magdeburg, Germany. 
Nikolaus Kriegeskorte, MRC Cognition and Brain Sciences Unit. 
Michael Milham, Child Mind Institute, New York City, USA. 
Thomas Nichols (chair), University of Warwick, UK. 
Russell Poldrack, Stanford University, Stanford, USA. 
Jean-Baptiste Poline, University of California, Berkeley, Berkeley, CA, United States. 
Erika Proal, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz & Neuroingenia, 
Mexico City, Mexico. 
Bertrand Thirion, Inria, Paris-Saclay University. 
David Van Essen, Washington University,  Division of Biology and Biomedical Sciences, 
St. Louis, USA. 
Tonya White, Erasmus MC, Rotterdam, Netherlands. 
BT Thomas Yeo, National University of Singapore, Singapore. 

 
We are deeply grateful to guest members Tristan Glatard & Samir Das, informatics experts who 
contributed greatly to data sharing and reproducibility sections, and (then) OHBM President 
Karen Berman and former OHBM president Peter Bandettini, who participated in a number of 
calls. 
 
We are indebted to Ben Inglis for allowing us to use his fMRI acquisition methods reporting 
reporting checklist as a template for our Acquisition Reporting checklist.  We are also grateful to 
the following for input on different specific sections: Ben Inglis, Doug Noll and Robert Welsh, 
Jörg Stadler on the Data Acquisition section; Tim Behrens on the Experimental Design section; 
Vince Calhoun and Christian Beckmann on Statistical Modeling & Inference; Ged Ridgway for 
Preprocessing and  Statistical Modeling & Inference; and Ting Xu for Statistical Modeling & 
Inference. 
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Appendix 2. Itemized lists.  See separate file. 
 
Appendix 3.  Defining Reproducibility. 
 
A number of terms with overlapping meaning are used to refer to the merits of scientific findings, 
including reproducibility, replicability, reliability.  Here we attempt to set the terminology and 
clarify their meaning as used this report. 
 
Replication is a cornerstone of the scientific method. A replication, where independent 
researchers use independent data and possibly distinct methods to arrive at the same original 
conclusion, is the ultimate standard for validating a scientific claim. 
 
Roger Peng [Peng2011] suggested a specific notion of reproducibility in the computational 
sciences.  He articulated a kind of reproducibility where independent researchers use the exact 
same data and code to arrive at the original result.  Within this there is a spectrum of 
reproducibility practice, ranging from a publication sharing only code, or code and data, to the 
best case, where detailed scripts and code and data are shared that produces the results 
reported in the paper when executed.   
 
The US Food & Drug Administration also has definitions to describe the precision of 
measurements, as codified by terms from International Standards Organization (ISO),  
“repeatability” and “reproducibility” (ISO2006).  
 
ISO repeatability (ISO 3534-2:2006 3.3.5) is defined as precision under “conditions where 
independent test/measurement results are obtained with the same method on identical 
test/measurement items in the same test or measuring facility by the same operator using the 
same equipment within short intervals of time”. 
 
ISO reproducibility (ISO 3534-2:2006 3.3.10) is defined as precision under “conditions where 
independent test/measurement results are obtained with the same method on identical 
test/measurement items in different test or measurement facilities with different operators using 
different equipment”  
 
While these definitions are motivated by laboratory use, in a setting where the “test item” is 
more likely to be a Petri dish culture than a human subject, they still offer a useful sharp 
definition.  In the neuroimaging setting, ISO repeatability could be measured with same-
scanner, same-session test-retest variability, and ISO reproducibility to be cross-scanner or 
cross-site test-retest variability. 
 
Of course, ISO reproducibility is at odds with Roger Peng’s definition, which somehow seems 
closer to ISO repeatability.  However, as brain imaging is highly computational and has close 
links to computational sciences like machine learning, statistics and engineering, we retained 
used the “computational” notion reproducibility notion throughout this work.  
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Appendix 4.  Short descriptions of commonly used fMRI statistical models. 
 
While any analysis software consists of myriad modelling decisions, an author must be able to 
describe the key facets of an analysis in the methods section of their paper.   To facilitate this, 
and to suggest a level of detail that is useful to readers unfamiliar with the software yet not 
distractingly long, we provide short descriptions for many of the most commonly models 
available in widely used software packages. 
 
Task fMRI.  Summaries for AFNI28, FSL29, & SPM30 (alphabetical order) are current as of 
versions AFNI_2011_12_21_1014, FSL 5.0.8 and SPM 12 revision 6470, respectively.  
 
AFNI 1st level – 3dDeconvolve: Linear regression at each voxel, using ordinary least squares, 
drift fit with polynomial. 
AFNI 1st level – 3dREMLfit: Linear regression at each voxel, using generalised least squares 
with a voxel-wise ARMA(1,1) autocorrelation model, drift fit with polynomial. 
AFNI 2nd level – 3dTtest: Linear regression at each voxel, using ordinary least squares. 
AFNI 2nd level – 3dMEMA: Linear mixed effects regression at each voxel, using generalized 
least squares with a local estimate of random effects variance. 
AFNI 2nd level – 3dMVM: Multivariate ANOVA or ANCOVA at each voxel. 
AFNI 2nd level – 3dLME: General linear mixed-effects modeling at each voxel, with separate 
specification of fixed and random variables. 
FSL 1st level: Linear regression at each voxel, using generalized least squares with a voxel-
wise, temporally and spatially regularized autocorrelation model, drift fit with Gaussian-weighted 
running line smoother (100s FWHM). 
FSL 2nd level – “OLS”: Linear regression at each voxel, using ordinary least squares. 
FSL 2nd level – “FLAME1”: Linear mixed effects regression at each voxel, using generalized 
least squares with a local estimate of random effects variance. 
SPM 1st level: Linear regression at each voxel, using generalized least squares with a global 
approximate AR(1) autocorrelation model, drift fit with Discrete Cosine Transform basis (128s 
cut-off). 
SPM 2nd level – no repeated measures: Linear regression at each voxel, using ordinary least 
squares. 
SPM 2nd level – repeated measures: Linear regression at each voxel, using generalized least 
squares with a global repeated measures correlation model. 
 
Independent Component Analysis (ICA).  Methods for ICA analyses are not as consolidated as 
mass univariate linear modelling, but we provide some short summaries of some typical 
analyses in GIFT31 and MELODIC32 (alphabetical order), current as of GIFTv3.0a and FSL 
                                                
28 http://afni.nimh.nih.gov 
29 http://fsl.fmrib.ox.ac.uk 
30 http://www.fil.ion.ucl.ac.uk/spm 
31 http://mialab.mrn.org/software/gift 
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5.0.8, respectively.  [Optional aspects, depending on particular variants used, indicated in 
brackets.] 
 
GIFT, single-subject fMRI with ICASSO stability:  Spatial ICA estimated with infomax where 
scaling of original data, spatial components and time courses constrained to unit norm, resulting 
best-run selected from 10 runs; post-ICA Z statistics produced for maps, between temporal 
component correlation (Functional Network Correlation), time courses, spectra, tested within a 
GLM framework. 
GIFT, multi-subject PCA-based back-reconstruction with ICASSO stability: Single-subject 
PCA followed by temporal concatenation, group-level PCA and then spatial ICA with infomax; 
calculation of single subject maps using PCA-based back-reconstruction, resulting best-run 
selected from 10 runs; post-ICA Z statistics produced for maps, time courses, spectra, and 
between temporal component correlation (Functional Network Correlation) tested within a GLM 
framework.  [Time-varying states computed using moving window between temporal component 
moving window correlation (Dynamic Functional Network Correlation).] 
GIFT, spatio-temporal (dual) regression of new data: Using provided component maps 
calculates per-subject components from new data using regression-based back-reconstruction; 
produces component maps, time courses and spectra and between temporal component 
correlation (Functional Network Correlation) tested within a GLM framework. 
GIFT, spatial ICA with reference: Spatial ICA using one or more provided seed or component 
maps.  Components found by joint maximization of non-Gaussianity and similarity to spatial 
maps resulting in subject specific component maps and timecourses for each subject, scaled to 
Z-scores, following by testing voxelwise (within network connectivity), between temporal 
component correlation (Functional Network Correlation), spectra, tested within a GLM 
framework. 
GIFT, source based morphometry of gray matter maps: Spatial ICA of multi-subject gray 
matter segmentation maps (from SPM, FSL, etc) resulting in spatial components and subject-
loading parameters tested within a GLM framework. 
MELODIC, single-subject ICA: Spatial ICA estimated by maximising non-Gaussian sources, 
using robust voxel-wise variance-normalisation of data, automatic model-order selection and 
Gaussian/Gamma mixture-model based inference on component maps. 
MELODIC, group level (concat ICA):  Temporally concatenation of fMRI data, followed by 
spatial ICA estimated by maximising non-Gaussian sources, using using robust voxel-wise 
variance-normalisation of data, automatic model order selection and Gaussian/Gamma mixture-
model based inference on component maps 
MELODIC, group-level (tensor-ICA): Higher-dimensional decomposition of all fMRI data sets 
into spatial, temporal and subject modes; automatic model order selection and 
Gaussian/Gamma mixture-model based inference on component maps 
MELODIC dual regression: Estimation of subject-specific temporal and spatial modes from 
group-level ICA maps or template maps using spatial followed by temporal regression.  
 
 

                                                                                                                                                       
32 http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MELODIC 
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Available multi-modality ICA methods include FIT33 and FSL-FLICA34 (alphabetical order), 
current as of FITv2.0c and flica_2013-01-15, respectively. 
 
FIT, joint ICA, two-group, fMRI + EEG fusion: Joint spatial ICA of GLM contrast maps and 
temporal ICA of single or multi-electrode event-related potential time course data (can be non-
concurrent) with infomax ICA; produces joint component maps (each with an fMRI component 
map and ERP component timecourse(s)) and subject loading parameters which are then tested 
for group differences with a GLM framework. 
FIT, N-way fusion using multiset CCA+joint ICA: Multiset canonical correlation analysis 
applied to several spatial maps to extract components, then submitted to spatial ICA with 
infomax ICA; produces multi-modal component maps and subject-specific loading parameters 
which are tested within a GLM framework. 
FIT, parallel ICA, fusion of gray matter maps and genetic polymorphism array data: Joint 
spatial ICA of gray matter segmentation maps and genetic ICA of single nucleotide 
polymorphism data performed through a maximization of independence among gray matter 
components, genetic components, and subject-wise correlation among one or more gray matter 
and genetic components.  Produces linked and unlinked gray matter and genetic components 
and subject loading parameters which are then tested within a GLM framework. 
FSL-FLICA multi-subject/multi-modality (Linked-ICA): ICA-based estimation of common 
components across multiple image modalities, linked through a shared subject-courses. 
 

                                                
33 http://mialab.mrn.org/software/fit/ 
34 http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLICA 


