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Statistics [from cross-validation] are like bikinis!.  
What they reveal is suggestive, but what they conceal is vital!
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Why cross-validate?
Training set Test set

bigger training set

better learning better validation

bigger test set

Key: training and test sets are disjoint.
And the dataset or sample size is fixed.
They grow at the expense of each other!

cross-validate  
to maximize both
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Use cases
• “When setting aside data for parameter 

estimation and validation of results can 
not be afforded, cross-validation (CV) is 
typically used”

• Use cases:

• to estimate generalizability  
(test accuracy)

• to pick optimal parameters  
(model selection)

• to compare performance  
(model comparison).
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Types of CV
1. How you split the dataset into train/test

•maximal independence between  
training and test sets is desired.

•This split could be 

• over samples (e.g. indiv. diagnosis)

• over time (for task prediction in fMRI)

2. How often you repeat randomized splits?

•to expose classifier to full variability

•As many as times as you can e.g. 100

≈ℵ≈

time (columns)
samples  
(rows)

6

healthy disease
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Many other variations!

Wainer, J., & Cawley, G. (2017). Empirical Evaluation of Resampling 
Procedures for Optimising SVM Hyperparameters.  

Journal of Machine Learning Research, 18(15), 1–35.

• k-fold, k = 2, 3, 5, 10, 20 

• hold-out,  
train % = 50, 63.2, 75, 80, 90 

• stratified 

• across train/test 

• across classes 

• inverted:  
very small training, large testing 

• leave one sample / pair / tuple 
condition / task / block out
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Hold-out CV

Train Testtrial 
1 

2 
… 

n

Note: there could be overlap among the test sets! 
i.e. test sets in different iterations could have common samples

Set aside a fixed percentage (e.g. 30%) for testing
whole dataset
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Intra-subject datasets: Haxby
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Task # samples #blocks mean accuracy 
of SVM l2

mean accuracy 
of SVM l1

bottle / scramble

209 12 secs

75% 86%
cat / bottle 62% 69%
cat / chair 69% 80%
cat / face 65% 72%

cat / house 86% 95%
cat / scramble 83% 92%

chair / scramble 77% 91%
chair / shoe 63% 70%
face / house 88% 96%

face / scissors 72% 83%
scissors / scramble 73% 87%

scissors / shoe 60% 64%
shoe / bottle 62% 69%

shoe / cat 72% 85%
shoe / scramble 78% 88%
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Inter-subject fMRI datasets

13
Reference: Varoquaux, G., Raamana, P. R., Engemann, D. A., Hoyos-Idrobo, A., Schwartz, Y., & Thirion, B. (2016).  

Assessing and tuning brain decoders: cross-validation, caveats, and guidelines.  NeuroImage.
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Conclusions
• Avoid leave-one-out cross-validation 

• esp. when correlations are present in your data 

• produces optimistic estimates with high variance 

• Use repeated-holdout (10-50% for testing) 

• respecting sample/dependency structure 

• maximizing independence between train & test sets

19
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In God we trust,  
but all others must cross-validate!
• Results could vary drastically 

with a different CV scheme 

• CV results have variance (>10%) 

• Document CV scheme in detail: 

• type of split 

• number of repetitions 

• Full distribution of estimates 

• Proper splitting is not enough, 
proper pooling is needed too.

Reviewer 2 

is watching!
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