Cross-validation: what, how and which?

Pradeep Reddy Raamana

Statistics [from cross-validation] are like bikinis. What they reveal is suggestive, but what they conceal is vital!

What is cross-validation?

What is cross-validation?

How to perform it?

What is cross-validation?

How to perform it?

 What are the effects of different CV choices?

What is cross-validation?

How to perform it?

 What are the effects of different CV choices?

available data (sample)

available data (sample)

available data (sample)

desired: accuracy on unseen data (population)

desired: accuracy on unseen data (population)

unseen data (population)

3

P. Raamana

3

P. Raamana

Training set

bigger training set

better learning

bigger training set

better learning

Key: training and test sets are disjoint.

Key: training and test sets are **disjoint.** And the dataset or sample size is fixed.

Key: training and test sets are **disjoint.**And the dataset or sample size is fixed.
They grow at the expense of each other!

Key: training and test sets are **disjoint.**And the dataset or sample size is fixed.
They grow at the expense of each other!

Training set

bigger training set

better learning

Test set

bigger test set

better validation

Key: training and test sets are **disjoint.**And the dataset or sample size is fixed. [They grow at the expense of each other!

 "When setting aside data for parameter estimation and validation of results can not be afforded, cross-validation (CV) is typically used"

- "When setting aside data for parameter estimation and validation of results can not be afforded, cross-validation (CV) is typically used"
- Use cases:

- "When setting aside data for parameter estimation and validation of results can not be afforded, cross-validation (CV) is typically used"
- Use cases:
 - to estimate generalizability (test accuracy)

- "When setting aside data for parameter estimation and validation of results can not be afforded, cross-validation (CV) is typically used"
- Use cases:
 - to estimate generalizability (test accuracy)
 - to pick optimal parameters (model selection)

- "When setting aside data for parameter estimation and validation of results can not be afforded, cross-validation (CV) is typically used"
- Use cases:
 - to estimate generalizability (test accuracy)
 - to pick optimal parameters (model selection)
 - to compare performance (model comparison).

1. How you split the dataset into train/test

- 1. How you split the dataset into train/test
 - maximal independence between training and test sets is desired.

- 1. How you split the dataset into train/test
 - •maximal independence between samples training and test sets is desired. (rows)
 - This split could be
 - over samples (e.g. indiv. diagnosis)

- 1. How you split the dataset into train/test
 - •maximal independence between samples training and test sets is desired. (rows)
 - This split could be
 - over samples (e.g. indiv. diagnosis)

- 1. How you split the dataset into train/test
 - •maximal independence between samples training and test sets is desired. (rows)
 - This split could be
 - over samples (e.g. indiv. diagnosis)
 - over time (for task prediction in fMRI)

time (columns)

- 1. How you split the dataset into train/test
 - •maximal independence between samples training and test sets is desired. (rows)
 - This split could be
 - over samples (e.g. indiv. diagnosis)
 - over time (for task prediction in fMRI)

time (columns)

- 1. How you split the dataset into train/test
 - •maximal independence between samples training and test sets is desired. (rows)
 - This split could be
 - over samples (e.g. indiv. diagnosis)
 - over time (for task prediction in fMRI)

2. How often you repeat randomized splits?

- to expose classifier to full variability
- As many as times as you can e.g. 100

Many other variations!

- k-fold, k = 2, 3, 5, 10, 20
- hold-out,
 train % = 50, 63.2, 75, 80, 90
- stratified
 - across train/test
 - across classes
- inverted: very small training, large testing
- leave one sample / pair / tuple condition / task / block out

- 1. 2-fold cross-validation (kf2)
- 2. 3-fold cross-validation (kf3)
- 3. 5-fold cross-validation (kf5)
- 4. 10-fold cross-validation (kf10)
- 5. 2 times repeated 5-fold (2xkf5)
- 6. 2 times repeated 10-fold (2xkf10)
- 7. 5, 10, and 20 times repeated bootstrap (5xboot, 1
- 8. 80/20 hold-out (80/20) a training set of size data, and test set of 20%, with similar proportion
- 9. resubstitution (resub), training and testing in the
- 10. inverted 5-fold (invkf5): learning on a single fold,
- 11. 20/20 hold out (20/20) training and test sets c
- 12. 5 times repeated 20/20 hold out (5x20/20)
- 13. 20/10 holdout (20/10)
- 14. 10/10 hold out (10/10)
- 15. 5 times repeated 10/10 hold out (5x10/10)

Wainer, J., & Cawley, G. (2017). Empirical Evaluation of Resampling Procedures for Optimising SVM Hyperparameters.

Journal of Machine Learning Research, 18(15), 1–35.

Hold-out CV

Set aside a fixed percentage (e.g. 30%) for testing

Set aside a fixed percentage (e.g. 30%) for testing

Note: there could be **overlap** among the test sets! i.e. test sets in different iterations could have common samples

Note: different folds won't be contiguous.

Note: different folds won't be contiguous.

Note: different folds won't be contiguous.

Note: different folds won't be contiguous.

Note: different folds won't be contiguous.

Note: different folds won't be contiguous.

Test sets in different trials are indeed mutually disjoint

Note: different folds won't be contiguous.

Training set

10

Whole dataset

Whole dataset

cross-validation accuracy!

cross-validation accuracy!

Intra-subject datasets: Haxby

Task	# samples	#blocks	mean accuracy of SVM <i>I2</i>	mean accuracy of SVM <i>I1</i>
bottle / scramble	209	12 secs	75%	86%
cat / bottle			62%	69%
cat / chair			69%	80%
cat / face			65%	72%
cat / house			86%	95%
cat / scramble			83%	92%
chair / scramble			77%	91%
chair / shoe			63%	70%
face / house			88%	96%
face / scissors			72%	83%
scissors / scramble			73%	87%
scissors / shoe			60%	64%
shoe / bottle			62%	69%
shoe / cat			72%	85%
shoe / scramble			78%	88%

Inter-subject fMRI datasets

			# blocks		mean accuracy	
Dataset	Description	# samples	(sess./subj.)	Task	SVM ℓ_2	SVM ℓ_1
Duncan [9]	fMRI, across subjects	196	49 subj.	consonant / scramble	92%	88%
				consonant / word	92%	89%
				objects / consonant	90%	88%
				objects / scramble	91%	88%
				objects / words	74%	71%
				words / scramble	91%	89%
	fMRI			negative cue / neutral cue	55%	55%
	across subjects	390	34 subj.	negative rating / neutral rating	54%	53%
				negative stim / neutral stim	77%	73%
Cohen (ds009)	fMRI across subjects	80	24 subj.	successful / unsuccessful stop	67%	63%
Moran [34]	fMRI across subjects	138	36 subj.	false picture / false belief	72%	71%
Henson [19]	fMRI across subjects	286	16 subj.	famous / scramble	77%	74%
				famous / unfamiliar	54%	55%
				scramble / unfamiliar	73%	70%
Knops [23]	fMRI, across subjects	114	19 subj.	right field / left field	79%	73%

Results: hold-out (10 trials)

Results: hold-out (10 trials)

Results: hold-out (10 trials)

Results: hold-out (10 trials)

Results: hold-out (10 trials)

Results: hold-out (10 trials)

Simulations: known ground truth

Simulations: known ground truth

Simulations: known ground truth

- It's not enough to properly split each fold, and accurately evaluate classifier performance!
- Not all measures across folds are commensurate!
 - e.g. decision scores from SVM (reference plane and zero are different!)
 - hence they can not be pooled across folds to construct an ROC!
 - Instead, make ROC per fold and compute AUC per fold, and then average AUC across folds!

- It's not enough to properly split each fold, and accurately evaluate classifier performance!
- Not all measures across folds are commensurate!
 - e.g. decision scores from SVM (reference plane and zero are different!)
 - hence they can not be pooled across folds to construct an ROC!
 - Instead, make ROC per fold and compute AUC per fold, and then average AUC across folds!

- It's not enough to properly split each fold, and accurately evaluate classifier performance!
- Not all measures across folds are commensurate!
 - e.g. decision scores from SVM (reference plane and zero are different!)
 - hence they can not be pooled across folds to construct an ROC!
 - Instead, make ROC per fold and compute AUC per fold, and then average AUC across folds!

- It's not enough to properly split each fold, and accurately evaluate classifier performance!
- Not all measures across folds are commensurate!
 - e.g. decision scores from SVM (reference plane and zero are different!)
 - hence they can not be pooled across folds to construct an ROC!
 - Instead, make ROC per fold and compute AUC per fold, and then average AUC across folds!

- It's not enough to properly split each fold, and accurately evaluate classifier performance!
- Not all measures across folds are commensurate!
 - e.g. decision scores from SVM (reference plane and zero are different!)
 - hence they can not be pooled across folds to construct an ROC!
 - Instead, make ROC per fold and compute AUC per fold, and then average AUC across folds!

- It's not enough to properly split each fold, and accurately evaluate classifier performance!
- Not all measures across folds are commensurate!
 - e.g. decision scores from SVM (reference plane and zero are different!)
 - hence they can not be pooled across folds to construct an ROC!
 - Instead, make ROC per fold and compute AUC per fold, and then average AUC across folds!

- It's not enough to properly split each fold, and accurately evaluate classifier performance!
- Not all measures across folds are commensurate!
 - e.g. decision scores from SVM (reference plane and zero are different!)
 - hence they can not be pooled across folds to construct an ROC!
 - Instead, make ROC per fold and compute AUC per fold, and then average AUC across folds!

Conclusions

- Avoid leave-one-out cross-validation
 - esp. when correlations are present in your data
 - produces optimistic estimates with high variance
- Use repeated-holdout (10-50% for testing)
 - respecting sample/dependency structure
 - maximizing independence between train & test sets

In God we trust, but all others must cross-validate!

- Results could vary drastically with a different CV scheme
- CV results have variance (>10%)
- Document CV scheme in detail:
 - type of split
 - number of repetitions
 - Full distribution of estimates
- Proper splitting is not enough, proper pooling is needed too.

References

- Varoquaux, G., Raamana, P. R., Engemann, D. A., Hoyos-Idrobo, A., Schwartz, Y., & Thirion, B. (2016). Assessing and tuning brain decoders: cross-validation, caveats, and guidelines. NeuroImage. http://doi.org/10.1016/j.neuroimage.2016.10.038
- Arlot, S., & Celisse, A. (2010). A survey of cross-validation procedures for model selection. Statistics Surveys, 4, 40–79.
- Forman, G. (2010). Apples-to-apples in cross-validation studies: pitfalls in classifier performance measurement. ACM SIGKDD Explorations Newsletter.

neuro predict

Acknowledgements

