Cross-validation:
what, how and which?

Pradeep Reddy Raamana

Statistics [from cross-validation] are like bikinis 2.
What they reveal is suggestive, but what they conceal is vital!

Reference: Varoquaux, G., Raamana, P. R., Engemann, 17 \ ONTARIO
D.A,H -ldrobo, A., Schwartz, Y., & Thirion, B.
(2016). Asggzzingroanod tunir(:g Vl\;?;ii decodelrrlso:ncross- BRAI N
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validation, caveats, and guidelines. Neurolmage. : \ 7
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Why cross-validate”

Training set e ~ Test set
bigger training set bigger test set
better learning better validation
Key: training and test sets are ohspmt. cross-validate
And the dataset or sample size is fixed. mize both
They grow at the expense of each other! to maximize bot
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Use cases

« “When setting aside data for parameter
estimation and validation of results can
not be afforded, cross-validation (CV) is
typically used”

e UUse cases:

* to estimate generalizability
(test accuracy)

e to pick optimal parameters
(model selection)

e to compare performance
(model comparison).

P. Raamana

accuracy distribution
from repetition of CV (%)
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87.5
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Types of CV

1. How you split the dataset into train/test .
time (columns)

PlES 000000000 sz
(rows) |O0O0000000: 0
e This split could be O000000000::::0
OO0O000000OO s
O00000000: 0O sx
» over time (for task prediction in fMRI) O000000000::::0

2. How often you repeat randomized splits? £ 0
ot0 expose classifier to full variability ot 5! ' t / {

e As many as times as you can e.g. 100

emaximal independence betweensam
training and test sets is desired.

* over samples (e.g. indiv. diagnosis)
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Many other variations!

e k-fold, k=2, 3, 5, 10, 20

e hold-out,
train % = 50, 63.2, 75, 80, 90

- stratified
e across train/test
* Aacross classes

* inverted:
very small training, large testing

* |leave one sample / pair / tuple
condition / task / block out

P. Raamana

10.
11.
12.
13.
14.
15.
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2-fold cross-validation (kf2)
3-fold cross-validation (kf3)
5-fold cross-validation (kf5)
kf10)
2xkf5)

10-fold cross-validation (
2 times repeated 5-fold (
2 times repeated 10-fold (2xkf10)

5, 10, and 20 times repeated bootstrap (5xboot, 1

80/20 hold-out (80/20) — a training set of size
data, and test set of 20%, with similar proportion

resubstitution (resub), training and testing in the
inverted 5-fold (invkf5): learning on a single fold,
20/20 hold out (20/20) — training and test sets ¢
5 times repeated 20/20 hold out (5x20/20)

20/10 holdout (20/10)

10/10 hold out (10/10)

5 times repeated 10/10 hold out (5x10/10)

Wainer, J., & Cawley, G. (2017). Empirical Evaluation of Resampling

Procedures for Optimising SVM Hyperparameters.
Journal of Machine Learning Research, 18(15), 1-35.
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Hold-out CV

Set aside a fixed percentage (e.g. 30%) for testing

whole dataset
Q000000000000 0000000000C0FO

trial Train .- lest
1 QQQQQQQQQQQQQQQQGOCDOOOOO

D QQQQQQQQQQQQOOOO®O¢QQQQQ
-ooooooooooa@oooooooooooo
n 000000000000000000000000

Note: there could be overlap among the test sets!
.e. test sets in different iterations could have common samples
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K-fold CV

Train Test, 4th fold
0000000000000 0000000000

0000000000000 00000000O0VI0CFOFS
900000000000 000000000000
O00000000000000000000000

Note: different folds won't be contiguous.



K-fold CV

Test sets In difterent trials are indeed mutually disjoint

trial Train 'Test, 4th fold
1 QQQQQQQQQQQQQQQQQQOOOOOO

2 ............OOOOOO......
......OOOOOO-Q...........
n 000000000000000000000000

Note: different folds won't be contiguous.

P. Raamana
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Valigation set
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Measuring bias
iNn CV measurements

Whole dataset
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cross-validation — validation
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Intra-subject datasets: Haxby

P. Raamana

Task

bottle / scramble
cat / bottle

cat / chair
cat / face
cat/ house
cat / scramble
chair / scramble
chair / shoe
face / house
face / scissors
scissors / scramble
scissors / shoe
shoe / bottle

shoe / cat

shoe / scramble

# samples

209

#blocks

12 secs

mean accuracy
of SVM /2

75%
62%
69%
65%
86%
83%
77 %
63%
88%
2%
3%
60%
62%
2%
/8%

mean accuracy
of SVM /1

86%
69%
80%
2%
95%
92%
91%
70%
96%
83%
87%
64%
69%
85%
88%

12



Inter-subject tIMRI datasets

# blocks mean accuracy
Dataset Description # samples  (sess./subj.) Task | SVM €, SVM £,
consonant / scramble 92% 88%
MRI consonant /word 92% 89%
g , objects / consonant 90% 88%
Duncan [9] across subjects 196 49 subj. )
objects / scramble 91% 88%
objects / words 74% 1%
words / scramble 91% 89%
fMRI negative cue / neutral cue 55% 55%
Wager [53] across subjects 390 34 subj. negative rating / neutral rating 54% 53%
negative stim / neutral stim 7% 73%
Cohen (ds009) fMRI 80 24 subj. successful / unsuccessful stop 67% 63%
across subjects
Moran [34] fMRI 138 36 subj. false picture / false belief 2% 1%
across subjects
MRI famous / scramble TT% 4%
Henson [19] ) 286 16 subj. famous / unfamiliar 54% 55%
across subjects .
scramble / unfamiliar 73% 70%
Knops [23] fMRI, 114 19 subj. right field / left field 79% 73%

P. Raamana

across subjects

Assessing and tuning brain decoders: cross-validation, caveats, and guidelines. Neurolmage.

Reference: Varoquaux, G., Raamana, P. R., Engemann, D. A., Hoyos-Idrobo, A., Schwartz, Y., & Thirion, B. (2016).
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Results: hold-out (10 trials)

100.0%

e Intra subject A LD ¢
e Inter subject e A
. . y coe el ~:§:,!;.;'°.,:.. 1) ¢
90.0% : —T S R
I R St R 1L A1
AR R
° . e °.°.':. :: ‘; :. !;::.E:.' E‘gzg:.l.’;;;;i! s8s
80.0% S I TR T JRXN (HILRLS
T P LI LTV (TIPS AL
' K ”:::!:"'.1-"?' ...f';ﬂh!::i .
S RN I L R P T PN L
70.0% . ::--:.:-::;53::.323?:{:: K P
N M PR L L DL EH R
SRTRAINHTY < SE I A TE L N I LTI
R T N T I
ot A L e
60.0% - i gAatiih ey 0
M by B
Vs e i il
R e
) 30N ot MR HH IR gl N
50.0% o/ "’."" :i‘:,' et O 4
: o e :.“, ':::. . s

50.0% 60.0% 70.0% 80.0% 90.0% 100.0%

14



Results: hold-out (10 trials)

100.0%

90.0%

80.0%

70.0%

Classifier accuracy
via cross-validation

60.0%

50.0%

P. Raamana

e Intra subject RSBt £
e Inter subject e A
o o : o ° o ..:. :::E;,':.: ..:..i;‘o

b it
o ° . .’ | :.\t:og" o.'|
‘:...:: .82. .:.t!.':...lgl
SRV T
SR IR A
TR (ALY S LR
SERTURRL R e ) AR TN (ETDCNE IR
BRSNS S 3F LS SETIL” ORRE TR AN
. TIREEIYEREITY R TYY S ETNEILE EERPO
. . ;”:...;.:,;.:!§ f.!‘:}" .o{';.”':’.ai,;
. :c :;° .J: !jm:'z':"‘:|°;=i°§::i!'.;::.
IR IR LS A0 1P LTS
° '-'c,;l’:s! N RL7 4 '!'3}211:0,"' o’
";; el hgcietyed sE.,.f:’-S.g:'l:'?f':.a A X
ST R PRELS ,,~I:Ii.."r"z",s; 1e, o .
T N AT H I I
* e o: P 0'! ..:.".’3..'i'! .2..:0'0:
SR> o/ ITH HEG RIS AL -
> 27 AL l' eelit i e 03T L
5 A TR T TN I I
SARLLY !E,'-E' -‘-v..E:. $
€ DANEY Tt e 0T
AL HEHPE I
ANER AP N "
| '.°: ;..‘:' '::E: . s

50.0% 60.0% 70.0% 80.0% 90.0% 100.0%

14



Classifier accuracy
via cross-validation
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Results: hold-out (10 trials)
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Results: hold-out (10 trials)
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3 splits
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CV vs. Validation: real data

P. Raamana

Leave one
sample out

Leave one
subject/session

20% left-out,
3 splits

20% left-out,
10 splits

20% left-out,
50 splits

—

negative bias unbiased positive bias
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Simulations:
Known ground truth
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Simulations:
Known ground truth
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Simulations:

Known ground truth
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CV vs. Validation
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Aggregation across folds

e |t's not enough to properly split each
fold, and accurately evaluate
classitier performance!

 Not all measures across folds are
commensurate!

e e.g. decision scores from SVM
(reference plane and zero are
different!)

* hence they can not be pooled
across folds to construct an ROC!

* Instead, make ROC per fold and

compute AUC per fold, and then
average AUC across folds!
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Conclusions

* Avoid leave-one-out cross-validation

e esp. when correlations are present in your data

e produces optimistic estimates with high variance
* Use repeated-holdout (10-50% for testing)

* respecting sample/dependency structure

e maximizing independence between train & test sets

P. Raamana
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In God we trust,
out all others must cross-valigate!

* Results could vary drastically
with a different CV scheme

e CV results have variance (>10%)
* Document CV scheme in detail:
e type of split
* number of repetitions
 Full distribution of estimates

e Proper splitting is not enough,
proper pooling is needed too.

P. Raamana
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