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Different parcellation techniques give different answers
e Sulci & gyri (AAL) (Tzourio-Mazoyer et al., 2002)
* Histology (Brodmann areas)
* Gene expression (https://www.alleninstitute.org)
* Receptor density mapping (Amunts and Zilles, 2015; Zilles and Amunts, 2009)
* RSFC (Biswal et al., 1995)

What is RSFC?

* |CA vs. seed-based correlation (Beckmann et al., 2005; Fox et al., 2005; Shehzad et al., 2009)

* RSFC data quality issues
Artifact (Behzadi et al., 2007; Jo et al., 2010; Power et al., 2012; Power et al., 2014)
Quantity of RSFC data (Laumann et al., 2015)
State-dependence (Tagliazucchi and Laufs, 2014)

* RSFC is hierarchically organized (Cordes and Nandy, 2006; Doucet et al., 2011; Hacker et al.,

2013; Lee et al., 2012)

RSFC as a parcellation tool
* Inner product-based RSN clustering (Lee et al., 2012; Yeo et al., 2011)
* Graph-theoretic parcellation (Power et al., 2011)
* Boundary mapping and parcel homogeneity evaluation (Cohen et al., 2008; Wig et al., 2014a;
Wig et al., 2014b)
* RSFC parcellation consistency across studies (Gordon et al., 2016)
* Relation of RSNs to function (Smith et al., 2009; Yeo et al., 2015)
* Gradients vs. seed-mapping can yield different answers (Buckner and Yeo, 2014)
* V1-V2 Parcellation and genetics vs. experience in development (Striem-Amit et al., 2015)

Individual RSFC differences (Dubois and Adolphs, 2016)
* Individual differences in RSFC (Laumann et al., 2015; Mueller et al., 2013)
* Supervised vs. unsupervised classification (Hacker et al., 2013)
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Course Objectives

The fundamental techniques used to analyze
resting state BOLD fMRI data

How a parcellation scheme can be built using
these techniques

Special challenges that result from the

hierarchical organization of resting state
networks

How to use supervised learning to build on the
data-driven techniques and address these
ENEES



There are many ways to parcellate
the cerebral cortex.
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Histology

Areas 1,2,3
Primary
somatosensory
cortex

Area 4
Primary motor cortex

Areas 44, 45 Area 4
Broca’s area " e Primary motor
] cortex

Areas 39, 40
Wernicke’s area

Area 22 BN  : T Area 17
Primary auditory . Primary visual cortex

cortex

Brodmann’s cytotechtonic map (1909): Brodmann’s cytotechtonic map (1909):
Lateral surface Medial surface




Receptor density (Zilles & Amunts 2009) :
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Introduction to resting state
functional connectivity (RSFC)



Seed-based Correlation Mapping

* Definition: Spatial map of brain regions correlated with mean
time-course of region of interest

Task Response Regions Correlated with “b”

* Motivation: Regions that correspond to similar brain
functions have spontaneously correlated signals

Biswal et al., 1995
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Seed-based Correlation Mapping

Fox et al., PNAS 2005



Vincent et al., J Neurophysiol 2008;100:3328-42
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Beckmann et al., TransRSocB 2005
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sICA vs. seed-based mapping TECHINICAL COMPARISON *

Major attribute

Algorithmic basis

Noise reduction
strategy

Combing results over
multiple subjects

Data-driven (“blind”)  Directed at pre-
determined regions

and functional systems

Maximization of Computation of ROI-
component voxel correlation (over
independence time)

Elimination of noise Regression prior to

components after sICA correlation mapping

Concatenation of Average maps over
datasets (“tensor ICA”) subjects



13

Clustering Approaches

* Fuzzy C-means:

— Each voxel yields one correlation map

— Clusters are formed from groups of maps with high spatial
similarity
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number of clusters

*Multiple “good” answers

Lee et al., PLoS One (2012)
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Clustering Approaches

Sub-regions are nested Multiple local minima in cluster instability

Reproducible, hierarchical organization
Yeo et al., J Neurophysiol (2011)
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Graph Theoretic Approaches

Subgraphs replicate across cohorts
Main cohort Replication cohort

The areal graph

Areal ROls

10% ; . 2% 10% . .
Tie density Tie densitv

Subgraphs change hierarchically over thresholds

Spheres: areal, main cohort Surfaces: modified voxelwise, replication cohort

weaker correlations - s———————  stronger correlations

Power et al., Neuron (2011)
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RSNs are Hierarchically Organized

* Agglomerative ICA results:
— RSNs(23) € Modules (5) € Systems(2)

7D & 2 (SN
Ny -
@A LD
B g O > R
@ADL DS

Doucet et al., ) Neurophysiol (2011)




17 Yeo et al. Leeetal. Smithetal. Doucetetal. Power et al.

(2011) (2012) (2013) (2011) (2011)
Clustered Clustered ICA Agglomerative Graph

FC Maps FC Maps ICA Modularity

Dorsal Attention

Ventral Attention

Sensorimotor

Visual

Fronto-parietal
Control System

Language

LA A2

Default Mode




Parcellation using RSFC
gradient mapping
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Unlike political maps, resting state
network (RSN) maps are not disjoint.
Consequently, RSN-based
parcellations necessarily involve
weighting and thresholding.



A Temporal Correlatlon
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Wig et al., Neurolmage 2014;93:276

GS. Wig et al. / Neurolmage 93 (2014) 276-291 289

2) Deform and resample data to 3) Generate average full volume  4) Spatial correlation between
32k vertex fs_LR atlas surface RSFC maps for each vertex each pair of vertices RSFC map
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Wig et al., Neurolmage 2014;93:276

a Location where b
RSFC pattern transitions
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Dorsal

Wig et al., Neurolmage 2014;93:276
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RSFC gradients are very unequal
in magnitude. The significance of

of this essentially topological
finding remains unknown.



Boundary map
(Dataset 1)
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Spatial Gradient Correlation (r)




RSFC parcellations in relation to
task-fMRI responses



et al., PNAS 2009;106:13040-5

Smith, Fox,

RS-fMRI
] [OFA

Task-fMRI

!



Wig et al., Neurolmage 2014;93:276 £l

Motor response Episodic memory-
(button push)

Reading related

Dors. motor Vent. motor o ) _Inf. Parietal Lobule

Angular
gyrus

RSFC-Boundary Mapping border
(edge probability > 0.15) Meta-analysis study count




ToneMon
PitchMon

Listening _ YeO et al, CeI’COF

MusicComp
Recitation(O) 2015 ; 25:3645
Reading(O)
Chewing
Flexion/Ext
TactileMon B
TMS
VibroMon
Grasping
FingerTap
Pointing
PainMon
Micturition
Reward
OlfactMon
Eat/Drink
Viewing
FaceMon
EmoPicDis
ClassiCond
PairRecall
TheoryofMind
Rest
Acupunct
WordGen(O)
WordGen(C)
SemanticMon
PhoneDis
Naming(O)
Reading(C)
Naming(C)
SimonTask
Stroop
Go/No-Go
Flanker
Deception [ |
TaskSwitch

Sternberg [ |
n-back
WCST
Counting
Saccades
Anti-Sacc [

VisualAttn
MentalRotat
[
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(a) Intrinsic organization of functionally specialized regions

Correlation z (r)

Fixation
ActionObs
VisualPursuit
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Obtaining good RSFC results
requires careful attention to artifact
reduction and long acquisitions.



JD.Power etal / Neurolmage 84 (2014) 320-341

2 Subject 22

GM-WH: r=0.30
GM-CSF: r=0.23

GM-WM: r=0.74
GM-CSF:r=0.37
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Wise et al., Neurolmage 2004;21-1652-64
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Gray Matter General Linear Model _
Behzadi et al.,
Neurolmage 2007;

Linear+Constant

Stimulus Terms o
Overall ~ Response Phyﬂglgglcal
Slgnal\ \ l / Random 37.90'101
Noise

b, .,=Xh+Sd+Pc+n

gray
/ | |

P = |loJ
est -V
| |

f

Select first N principal components

{

Temporal Principal Component Analysis

]

Detrend

i

b.po/=5d+Pc+n
Noise ROl General Linear Model

- White matter and CSF-only voxels

1) Anatomical noise ROI

2) tSTD noise ROI - Top 2% of voxels per slice with
highest temporal standard deviation
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Individual RSN differences



Group

B Defaunt Dorsal Attention [0 Somato-motor I Salience [] Lateral Somato-motor
Il Visual B ventralAttention [l Medial parietal [] Primary visual [Jj] Medial temporal
[] Fronto-parietal [l Cingulo-opercular [ ] Parieto-occipital L[] Auditory [[] Posterior medial temporal

[ Fronto-parietal 2 [] [] Unknown

Laumann et al., Neuron 2015;87:1-14



Introduction to supervised
classification

39
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Supervised vs. Unsupervised Approaches

Example application:
Automated postal mail sorting

Unsupervised Learning: / \ Supervised Learning

(e.g., cluster analysis, ICA) « discriminant analysis (LDA/QDA)
* neural networks
* support vector machines

_1/21)

.......

Bresson et al., 2012
Discovery: Classification:
These are the characters of the decimal system This image represents the number “2”
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Setting up the problem

Input Space (X): Output Space (Y):

Array of pixels Class Desired
N Value

— uln O

Y o 1(211 1

f ( . . 8) _) 1(3” O

_) 1(4)1 O

_) O

N J

Y= f(X,6)

O - learned model parameters
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Setting up the problem

Input Space (X): Output Space (Y):
Array of voxels Class  Desired
, N Value
— —> | “DAN” 0
—> —> | “VAN” 0
—> f( ‘,5') — > | “SMN” 1
—> —> | “VIS” 0
—> —> 0
. J

Y= f(X,6)

* Training Data:
— Set of seed-based correlation maps
* Must include variability across regions and subjects
— Each seed assigned to one RSN



Supervised Learning

* Theory:

— Learn an underlying function that maps
correlation map topography to RSN identity

* Application:
— Create correlation map for every region in the
brain
— Apply learned function to these maps

— Result: map of RSN identity throughout the brain

43



RSN Classification Technique

 Compute a correlation map for each point in the
brain

* Estimate membership in each RSN class based on
learned function

Voxels Input Layer Hidden Layer  Output Layer RSN Topography
= y

. _ 1
Generate a correlation map ()
for every location in the brain —

-
DAN , £ '\

VAN

Hacker et al., Neurolmage (2013)



Generalizability to Untrained Brain Regions

Correct extrapolation to regions not in the training data

(cerebellum, thalamus in this example) indicates learning of an
underlying function.
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