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* In resting-state fMRI, the reference signal is usually the time series of a voxel or
region of interest.
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Slide courtesy of Rasmus Birn (University of Wisconsin-Madison)



Sources of the BOLD
fMRI signal



Sources of the fMRI signal: Motion-related fluctuations
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Video courtesy of Javier Gonzalez Castillo (NIH)



- Cardiac pulsability generates small movements in brain tissue as well as inflow
effects in and around vessels. It is often localized in tissue regions close to:

= Large arteries and draining veins (e.g. sagittal sinus or circle of Willis)
» Edges of the brain, lateral ventricals and sulci.

 Heart rate is usually 50-70 beats/min: Main frequency around 0.8-1.2 Hz.
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Dagli et al. (1999). Localization of cardic-induce signal change in fMRI. Neuroimage 9:407-415

Bhattacharyya and Lowe (2004). Cardiac-induced physiological noise in tissue is a direct observation of cardiac-
induced fluctuations. Magn Reson Imaging 22(4):9-13. 7



Respiratory Noise
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Thoracic movements during breathing result in respiratory-dependent changes in
the magnetic field in the head volume that produce a phase shift in the image,
resulting in more spatially global effects.

Breathing rate is usually 15-25 cycles/min: Main frequency around 0.25-0.4 Hz.

Small changes of the head also introduce spin history artefacts. Closely related to
head movement artefacts and also cardiac pulsability.
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Low frequency physiological fluctuations (below 0.1 Hz)

- Variations in respiratory rate affect the fMRI signal by changing the oxygenation
level and arterial level of CO2, which is a potent cerebral vasodilator.
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Sources of the fMRI signal: Draining veins

- Gradient-Echo (GE) Echo-Planar Imaging (EPI) typically used for BOLD fMRI has

stronger contribution from macrovessels, mainly located in pial surface.

- BOLD contamination from macrovessels (large arteries, draining veins) are a
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serious impediment for high-resolution localization of neuronal activity in fMRI.




- Low frequency fluctuations in the signal (< 0.01 Hz) related to very slow head
displacements, scanner-related drifts (e.g. heating), etc.

- Different for each voxel (even neighbouring voxels)
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Sources of the fMRI signal: Hardware-related instabilities

- Nowadays, most MRI scanners use multichannel receiver coils for data acquisition
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Methods for denoising
the BOLD tMRI signal



- Translation (Ax, Ay, Az) and rotation (yaw, pitch roll) to reference image
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AFTER CORRECTION

* Realignment does not fully compensate for motion-related signal changes. It
cannot correct the data as if motion had never occurred.

- Slice-wise motion correction approaches are becoming increasingly effective for
compensating within-volume motion , e.g. SLOMOCO (Beall and Lowe, 2014),
using EEG-cap as motion sensor (Zotev et al., 2012),

 Prospective motion correction (e.g. navigators or optical tracking systems) are

also very effective ways of compensating motion occurring faster than the TR. y



Compensation of motion effects: Volumetric realignment

Realignment parameters: R(r) = {Ax, Ay, Az, yaw, pitch roll} ‘ 6 regressors

+ the temporal derivatives: R(¢-1)

+ the corresponding squares, i.e. R%(¢t) and R(t-1)

the second temporal derivative: R(t-2) and R(t-2) * 36 regressors
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In this session do not miss Jonathan Power's talk to know how to create grayplots, and Molly

Bright's talk to know more about critical questions for performing nuisance regression



Censoring and data interpolation

- Censoring: Time points with large artefacts (e.g. excessive motion, hardware
instabilities, etc.) are first identified and then zeroed, excluded from further
analysis or interpolated with new data (e.g. linear or splines interpolation).

- Time points are identified in time courses computed from:
- Realignment parameters: Multiple definitions of Framewise displacement (FD)
- DVARS: Root-mean square value of the differentiated fMRI signal
- Percentage of voxels with spike-like pattern at each time point (e.g. 3dDespike

function in AFNI)
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It Is important to report methods used for censoring (criteria, threshold) and
interpolation as well as the number of censored scans per subject or groups, and

whether data was interpolated, zeroed, or nulled for subsequent analyses.




 Nuisance regression uses the principal components from a dataset that simulates
motion (MotSim) and its realignment (MotSimReg)
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Edge Brain Voxels
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Phase-shifted Soft Tissue Regression (PSTCor)

« Account for motion-related
effects and additional noise
and artefactual fluctuations
(e.g. physiological noise)

A
RVT / RRF Respirations Pulse
- Compute correlation with time-
shifted time series from: pesk=0ss | p
= white matter ROls,
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» soft tissues (i.e. face, skull) £ ‘ .
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Component Based Noise Correction Method (CompCor)

* Principal Components (PCs) explaining the highest variance from voxels within
eroded WM and ventricles CSF anatomical masks (aCompCor), voxels with
largest temporal standard-deviation (tCompCor), or combination of both.

- It is able to account for physiological fluctuations without the need of external
recordings.

Average spectra computed by aCompCor (similar for tCompCor)

Tissue masks for aCompCor

Respiratory Cardiac
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( 5 »  Determining the optimal number of PCs is
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Anatomy-based Correlation Correction (ANATICOR)

Average signal over
WMe voxels inside 20
mm radius

Voxel-dependent
nuisance regressors

White matter

eroded Figure adapted from Box Cox (AFNI) BEFORE AFTER
WM
(WMe) ANATICOR ANATICOR

LOCALIZED HARDWARE INSTABILITIES




Independent Component Analysis (ICA) based Denoising

fMRI dataset

Your favourite ICA algorithm (e.g. GIFT, MELODIC)

$ Computation of spatial and temp atures for each IC

Your favourite ICA classification er very useful
(manual, semi-automated or automated) view, FSLeyes)

N\ O\ a ) E

Y Noise & Artefact

N3 é

E (non-BOLD) ICs
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Non-Aggressive Aggressive

FSL Documentation: http: sI.fmrib.ox.acl fslcourse/lectures/melodic.pdf

Nuisance
Regression

Denoised tMRI
dataset

Denoised tMRI
dataset
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Independent Component Analysis (ICA) based denoising

- Manual Labelling: GOLD standard IF AND ONLY IF done by experts, time
consuming, difficult reproducibility within and across raters.

- Automated or Semi-automated classification: Distinguish between signal-

related (BOLD), and noise- or artefact-related (non-BOLD) components.

m Algorithms: Support Vector Machines, Linear Discriminant Analysis, Decision Trees,
Naive Bayes, (Sparse) logistic regression, K-Nearest Neighbourhood, Random Forests,
etc, or ensemble of classifiers.

m Spatial features: spatial frequency, entropy and smoothness, fraction of IC map
within GM, CSF, WM, edges of the brain, etc.

m Temporal features: power fraction above a certain frequency, correlation with
realignment parameters, spectral distribution, autoregressive properties, etc.

Check out Ludovica Griffanti's talk on this session for more ICA-based denoising
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Denoising physiological noise with external recordings

MR images

Pulse Oximeter signal (or ECG signal)

24



RETROICOR

MR images Figures courtesy of Rasmus Birn (University of Wisconsin-Madison)
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Low frequency fluctuations in respiratory volume (RVT)

- Variations in respiratory rate can be reduced by regressing out changes in

respiratory volume (RVT) that are assumed to correlate with fluctuations in
arterial CO2 concentrations.
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Low frequency fluctuations in respiratory volume (RVT)

- The Respiratory Volume Time (RVT) is correlated with the average GM (or
global) time series at multiple lags, and usually the two lagged RVT with
maximum positive and negative correlation are used as nuisance regressors.
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Low frequency fluctuations in cardiac rate (CR)
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Respiration and Cardiac Response Functions (RRF & CRF)

- Instead of fitting 2 lags of the respiratory volume (RV) and cardiac rate (CR) time
series, deconvolve their responses from the fMRI signal.

+1

+0.5|

0 5 10 15 20 25 30

RRF(t) was initially estimated as the
RRF(t) = 0.6t>te~ /16 _ 0.0023¢3-54¢~1/4-25 average response to brief breath-holding
events
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Chang et al. (2009). Influence of heart rate on the BOLD signal: The cardiac response function. Neuroimage
44(3):857-869.




- End-tidal CO2 (PetCO2) measurements can also be recorded during fMRI
experiments via a nasal cannula or face mask.

» The PetCO2 response function can be estimated in similar fashion to the cardiac
and respiratory response functions
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Golestani et al. (2015). Mapping the end-tidal CO2 response function in the resting state BOLD fMRI signal:
Spatial specificity, test-retest reliability and effect of fMRI sampling rate. Neuroimage 104:266-277. 31



- The RRF and CRF were computed as the average physiological responses
across subjects; yet, employing these responses, however, does not warrant for
Intra-subject variations in physiological response, particularly for clinical cases.

* Derive the RRF and CRF from the global or average GM signal since we are in
the physiological noise regime (thermal noise is averaged across voxels).
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Falahpour et al. (2013). Subject specific BOLD fMRI respiratory and cardiac response functions obtained
from global signal. Neuroimage 72:252-264.

32



Accounting for continuous blood pressure recordings

- Changes in blood pressure can also be monitored with MR-compatible continuous

blood pressure devices in order to minimise intrinsic fluctuations related to cerebral

autoregulation.

- Continuous blood pressure traces have been observed to strongly correlate with

the global signal.

Pulse Wave Velocity calculation
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Multi-echo FMRI

Multi-echo tMRI (your advanced ftMRI acquisition)

>
time (s)

 No SAR cost, as there are not
additional excitation pulses

TE1= 14 ms TE2 = 29 ms TE3s =44 ms

>

Not big limitations nowadays
with SMS acquisitions
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>
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Slide courtesy of Javier Gonzalez Castillo (NIH) 34
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Multi-echo FMRI: Optimal combination to maximize CNR

- We have Ne pseudo-concurrent signals, why not simply combine them to
reduce the uncorrelated noise present in each individual signal?

Optimally weighted summation
« Optimizes contrast-to-noise ratio (CNR)

with respect to single-echo signal.
- Helps to recovers signal in regions with

N
=Y S(x,t,TE,) - w,(TE,)

n=1
TE, ¢ TEn/Ti. large signal drop-outs at standard
w(TE,) = - single-echo acquisitions (i.e. inferior
n=1+""n | temporal, temporal pole, orbitofrontal).

Single Echo Optimally Combined
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» Acquisition of 2 echoes (TE1 and TE>) with short TE+ for minimal T2*-weighting
and high sensitivity to fluctuations in the net magnetization So (i.e. capturing
motion-related signal changes, inflow effects and respiratory-related fluctuations)

- Short TE1 signal is used as nuisance regressor for the optimal TE2 (= T2*) signal.

« Shorter TE+ achievable with spirals (= 3 ms) than with EPI trajectories (= 10 ms)

Sub. 9 Rest Rest + Motion

0000|1000 GE

>

Traditional
preprocessing

TE1 data

TE: TE» TE

BOLD sensitivity (AS)

Trad. with
TE1 regression

Buur et al. (2009). A dual echo approach to removing Bright & Murphy (2013). Removing motion and
motion artefacts in fMRI time series. NMR Biomed. physiological artefacts from intrinsic BOLD fluctuations
22:551-560. using short echo data. Neuroimage 64(6):526-537

Correlation Coefficient
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- BOLD and non-BOLD independent components are classified according to the
TE-dependence of the ICA spatial maps.
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Kundu et al. (2012). Differentiating BOLD and Non-BOLD Signals in fMRI Time Series Using Multi-Echo EPI.
Neuroimage 60(3): 1759-1770.

Check out Prantik Kundu's talk on this session for more denoising with ME-fMRI
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Non-constant TR: Denoising with Multi-echo FMRI

- Non-constant TR: Cardiac gating to freeze pulsation-brain movement (e.g. fMRI
studies of brainstem, amygdala, hippocampus, thalamus), TR is triggered by the

subject's response, variable sparse fMRI sampling, etc.

- Non-constant TR introduces a strong T1-related fluctuation in the fMRI signal
that can be effectively removed by Dual-echo or ME-ICA approaches
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Phased-based methods

* MRl is inherently a complex signal with its real and imaginary part, or equivalently
its magnitude and phase signal.

- Typically, the magnitude signal is only used in fMRI data analysis;

- The phase signal contains relevant information about magnetic field variations,
e.g. differences in susceptibility in regions near air and tissue boundaries.
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Fit signal Magnitude (S) &

Residuals

- The phase signal can be also used as nuisance regressor to remove the effect of
large vessels and draining veins in Gradient Echo fMRI.
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- Quasi-random orientation
of vessels in capillary bed
results in incoherent
phase signal changes.

Menon (2002) Postacquisition suppression of large-vessel
BOLD signals in high-resolution fMRI. Magn Reson Med.
47:1-9

Curtis et al. (2014). Phase based venous suppression in

resting-state BOLD GE-fMRI. Neuroimage 100:51-59.
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Take home message

- fMRI is very noisy. The BOLD effect due to neuronal activity is only 2-5% of
the mean amplitude and the signal is corrupted by multiple noise components.

- Denoising is critical for both task and resting state fMRI. Numerous
techniques are available for denoising the BOLD fMRI signal.

- Motion-related signal changes and physiological noise fluctuations are usually
the main targets for denoising.

- Phase-based and multi-echo fMRI can help to improve cleaning the signal, but
require extra attention at the time of data acquisition.

 There is no 'best' method for preprocessing and denoising, but there are
iIncorrect methods.

ALWAYS LOOK AT THE DATA!!

(BEFORE AND AFTER PREPROCESSING)
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ABSTRACT

Blood oxygen-level-dependent functional magnetic resonance imaging (BOLD fMRI) has rapidly become a
popular technique for the investigation of brain function in healthy individuals, patients as well as in animal
studies. However, the BOLD signal arises from a complex mixture of neuronal, metabolic and vascular
processes, being therefore an indirect measure of neuronal activity, which is further severely corrupted by
multiple non-neuronal fluctuations of instrumental, physiological or subject-specific origin. This review aims to
provide a comprehensive summary of existing methods for cleaning the BOLD fMRI signal. The description is
given from a methodological point of view, focusing on the operation of the different techniques in addition to
pointing out the advantages and limitations in their application. Since motion-related and physiological noise
fluctuations are two of the main noise components of the signal, techniques targeting their removal are
primarily addressed, including both data-driven approaches and using external recordings. Data-driven
approaches, which are less specific in the assumed model and can simultaneously reduce multiple noise
fluctuations, are mainly based on data decomposition techniques such as principal and independent component
analysis. Importantly, the usefulness of strategies that benefit from the information available in the phase
component of the signal, or in multiple signal echoes is also highlighted. The use of global signal regression for
denoising is also addressed. Finally, practical recommendations regarding the optimization of the preprocessing
pipeline for the purpose of denoising and future venues of research are indicated. Through the review, we
summarize the importance of signal denoising as an essential step in the analysis pipeline of task-based and
resting state fMRI studies.
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