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Introduction: Task-based fMRI
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Introduction: Resting-state fMRI
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time (s)

• In resting-state fMRI, the reference signal is usually the time series of a voxel or 
region of interest. 

4Slide courtesy of Rasmus Birn (University of Wisconsin-Madison)
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Sources of the fMRI signal: Motion-related fluctuations

Video courtesy of Javier Gonzalez Castillo (NIH)
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Cardiac Noise
• Cardiac pulsability generates small movements in brain tissue as well as inflow 

effects in and around vessels. It is often localized in tissue regions close to:
Large arteries and draining veins (e.g. sagittal sinus or circle of Willis)
Edges of the brain, lateral ventricals and sulci.

Bhattacharyya and Lowe (2004). Cardiac-induced physiological noise in tissue is a direct observation of cardiac-
induced fluctuations. Magn Reson Imaging 22(4):9-13.

Dagli et al. (1999). Localization of cardic-induce signal change in fMRI. Neuroimage 9:407-415

Video courtesy of Catie Chang (NIH)

TR:100 ms
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• Heart rate is usually 50-70 beats/min: Main frequency around 0.8-1.2 Hz.  
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Respiratory Noise
• Thoracic movements during breathing result in respiratory-dependent changes in 

the magnetic field in the head volume that produce a phase shift in the image, 
resulting in more spatially global effects.

Raj et al (2001). Respiratory effects in human functional magnetic resonance imaging due to bulk susceptibility 
changes. Phys. Med. Biol. 46:3331-3340

• Small changes of the head also introduce spin history artefacts. Closely related to 
head movement artefacts and also cardiac pulsability. 3336 D Raj et al

Figure 2. (a) Axial echo-planar brain image acquired with two bottles containing 0.01 mM copper
sulfate attached to the head coil. (b) MR signal from a region of interest (10 pixels) in the bottle
shown in figure 2(a). During images 1–40, the subject held his breath after exhaling completely,
during images 40–140 normal breathing was resumed and during images 140–200 the subject held
his breath at full inspiration.

axial echo-planar images (Raj et al 2000). Analytical calculations, simulations and imaging
experiments on a phantom show that for the simple model we have assumed, the spatially
varying component of the field inhomogeneity leads to a shading of the image intensity in
the phase encode direction. There is also a predicted shift of the image (in the phase encode
direction) that is caused by the spatially constant component of the field error. In addition,
we hypothesize that there may be a global signal decrease in the images due to intravoxel
dephasing.

The shading of the image and image shift occur preferentially in the phase-encoding
direction because the time between the acquisition of any two adjacent points in that direction
is significantly higher than the analogous time for the frequency-encoding direction. Thus

3336 D Raj et al

Figure 2. (a) Axial echo-planar brain image acquired with two bottles containing 0.01 mM copper
sulfate attached to the head coil. (b) MR signal from a region of interest (10 pixels) in the bottle
shown in figure 2(a). During images 1–40, the subject held his breath after exhaling completely,
during images 40–140 normal breathing was resumed and during images 140–200 the subject held
his breath at full inspiration.

axial echo-planar images (Raj et al 2000). Analytical calculations, simulations and imaging
experiments on a phantom show that for the simple model we have assumed, the spatially
varying component of the field inhomogeneity leads to a shading of the image intensity in
the phase encode direction. There is also a predicted shift of the image (in the phase encode
direction) that is caused by the spatially constant component of the field error. In addition,
we hypothesize that there may be a global signal decrease in the images due to intravoxel
dephasing.

The shading of the image and image shift occur preferentially in the phase-encoding
direction because the time between the acquisition of any two adjacent points in that direction
is significantly higher than the analogous time for the frequency-encoding direction. Thus

Inhale+Breath-
hold

Regular 
breathing

Exhale+ 
Breath-hold

2 bottles of copper sulfate 
attached to the head coil

Power Spectrum

frequency (Hz)

Respiration

• Breathing rate is usually 15-25 cycles/min: Main frequency around 0.25-0.4 Hz.  
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Low frequency physiological fluctuations (below 0.1 Hz)

Wise et al. (2004). Resting fluctuation in arterial carbon dioxide induce significant low frequency fluctuations in 
BOLD signal. Neuroimage 21(4):1652-1664.

• Variations in respiratory rate affect the fMRI signal by changing the oxygenation 
level and arterial level of CO2, which is a potent cerebral vasodilator.
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Sources of the fMRI signal: Draining veins

shortcoming is that this surrogate signal reflects neuronal mass acti-
vity. Although this fact is acknowledged by the vast majority of
investigators, its implications for drawing judicious conclusions
from fMRI data are most frequently ignored. The aim of this review
is first to describe briefly the fMRI technology used in cognitive
neuroscience, and then discuss its neurobiological principles that
very often limit data interpretation. I hope to point out that the
ultimate limitations of fMRI are mainly due to the very fact that it
reflects mass action, and much less to limitations imposed by the
existing hardware or the acquisition methods. Functional MRI is
an excellent tool for formulating intelligent, data-based hypotheses,
but only in certain special cases can it be really useful for unambigu-
ously selecting one of them, or for explaining the detailed neural
mechanisms underlying the studied cognitive capacities. In the vast
majority of cases, it is the combination of fMRI with other techniques
and the parallel use of animal models that will be the most effective
strategy for understanding brain function.

A brief overview of fMRI
The beautiful graphics MRI and fMRI produce, and the excitement
about what they imply, often mask the immense complexity of the
physical, biophysical and engineering procedures generating them.
The actual details of MRI can only be correctly described via
quantum mechanics, but a glimpse of the method’s foundation
can be also afforded with the tools of classical physics using a few
simple equations. (See refs 2 and 3 for a comprehensive account of
the theoretical and practical aspects of MRI, and ref. 4 for its func-
tional variants.) Here I offer a brief overview that permits an under-
standable definition of the terms and parameters commonly used in
magnetic resonance imaging (see ‘MRI and fMRI principles’ in the
Supplementary Information for a description of the principles and
terms of anatomical and functional MRI). Functional activation of
the brain can be detected with MRI via direct measurements of tissue
perfusion, blood-volume changes, or changes in the concentration
of oxygen. The blood-oxygen-level-dependent (BOLD) contrast
mechanism5,6 is currently the mainstay of human neuroimaging.

Critical factors determining the utility of fMRI for drawing con-
clusions in brain research are signal specificity and spatial and tem-
poral resolution. Signal specificity ensures that the generated maps
reflect actual neural changes, whereas spatial and temporal resolution
determine our ability to discern the elementary units of the activated
networks and the time course of various neural events, respectively.
The interpretability of BOLD fMRI data also depends critically on the
experimental design used.
Spatiotemporal properties of BOLD fMRI. The spatiotemporal
properties of fMRI are covered in some detail in the
Supplementary Information. Briefly, spatial specificity increases with
increasing magnetic field strength and for a given magnetic field can
be optimized by using pulse sequences that are less sensitive to signals
from within and around large vessels (see Fig. 1 and ‘Spatial and
temporal specificity’ in the Supplementary Information).
Spatiotemporal resolution is likely to increase with the optimization
of pulse sequences, the improvement of resonators, the application of
high magnetic fields, and the invention of intelligent strategies such
as parallel imaging, for example, sensitivity encoding (SENSE)
method (see ‘Spatial resolution’ section in the Supplementary
Information).

Human fMRI can profit a great deal from the use of high-field
scanners and by the optimization of the pulse sequences used.
Surprisingly, only a minority of the studies in the cognitive sciences
seem to exploit the technical innovations reported from laboratories
working on magnetic resonance methodologies. Most of the top-
cited cognitive neuroscience studies (approximately 70%) were car-
ried out at 1.5 T scanners, 20% were carried out at 3 T scanners, and
very few at 2 T or 4 T field strengths. About 87% of all studies used the
conventional gradient-echo echoplanar imaging (GE-EPI), whereas
the rest used different variants of the spin-echo echoplanar imaging
(SE-EPI) sequence. This combination of low magnetic field and tra-
ditional GE-EPI is prone to many localization errors. However, as of
the beginning of the twenty-first century the percentage of middle-
field (3 T) studies has increased, to reach about 56% in 2007. High
magnetic fields are likely to dominate magnetic resonance research

a b c

d e f

GE GE SE

SE SE SE

Figure 1 | Specificity of GE-EPI and SE-EPI. Examples of high-resolution
GE-EPI and SE-EPI (courtesy J. Goense, MPI for Biological Cybernetics).
a, b, Two slices of GE-EPI demonstrating the high functional signal-to-noise
ratio (SNR) of the images, but also the strong contribution of macrovessels.
The yellow areas (indicated with the green arrows) are pia vessels, an
example of which is shown in the inset scanning electron microscopy image
(total width of inset, 2 mm). For the functional images red indicates low and
yellow indicates high. In-plane resolution 333 3 333mm2; slice thickness

2 mm. c, Anatomical scan, SE-EPI, 250 3 188mm2, 2 mm slice, with time to
echo (TE) and repetition time (TR) 70 and 3,000 ms respectively. d, e, Two
slices of SE-EPI showing the reduction of vascular contribution at the pial
side of the cortex. In-plane resolution 250 3 175mm2, slice thickness 2 mm.
f, The anatomical scan is the SE-EPI used for obtaining the functional scans
(TE/TR 5 48/2,000 ms) but at different greyscale and contrast. The
resolution of the anatomical scan permits the clear visualization of the
Gennari line (red arrow), the characteristic striation of the primary visual

REVIEWS NATUREjVol 453j12 June 2008

870
 ©2008 Macmillan Publishers Limited. All rights reserved

• Gradient-Echo (GE) Echo-Planar Imaging (EPI) typically used for BOLD fMRI has 
stronger contribution from macrovessels, mainly located in pial surface. 

• BOLD contamination from macrovessels (large arteries, draining veins) are a 
serious impediment for high-resolution localization of neuronal activity in fMRI.

Figure adapted from Logothetis (2008) What we can do and 
what we cannot do with fMRI. Nature 453:869-878
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HUMAN BRAIN CORTICAL BLOOD VESSELS 

FIG. 1. Drawing of the cortical pial vessels. Right hemisphere. Female, 50 years. RED: Tributaries of the middle cerebral artery. 
GREEN: Tributaries of the anterior cerebral artery. BLUE: Tributaries of the posterior cerebral artery. Veins are shown in black. 

[68] describes the arterial network as being polygon-like 
formed by the arteries and their anastomoses (Fig. 8). 

Cortical Artery Diameters 

The diameter of cortical arteries is difftcult to evaluate; 
the results of measurements are debatable and are a function 
of the pressure of injection and modi~cations caused by the 
fixation. Even in vivo, as noted by Denny-Brown and Meyer 
[24], there are large variations in the diameter of cortical 
vessels according to physiological conditions. Despite these 
restrictions, certain measurements are significant. As stated 
in the section on method, measurements obtained by 
intravascular injection show the luminal diameter of the ves- 
sels. 

Central arteries of the Iobule always have a large diameter 
of 260 /L to 280 Al, at their origin. Peripheral arteries have an 
average diameter of 150 to 180 CL. At the cortex surface, all 
arterioles of 50 p or less, penetrate the cortex or form 
anastomoses. The diameter of most of these penetrating ar- 
teries is approximately 40 y. 

The diameter of the largest anastomoses which join two 
arterioles end to end, varies considerably from 25 to 90 p. 
This corresponds to measurements taken by Anderson and 

Anderson [3] in the cat and dog. Small, straight anastomoses 
have average diameter of 10 ,u which also concurs with ob- 
servations by Anderson and Anderson [3]. There are lo- 
calized variations in diameter along the arteries path. In cer- 
tain cases, the arterial lumen is rosary-like with successive 
bulges and constrictions (Figs. 11 and 12), as noted by Row- 
botham and Little [64]. Occasionally, there is a slight de- 
crease in the arteriole diameter at its origin on the principal 
trunk; its possible significance will be discussed later (Figs. 8 
and 10). 

~eiatif~nships Between Arteries and Arachnoid 

As noted by Dahl [22], the arachnoid observed under the 
stereoscopic microscope appears to be composed of a 
homogeneous superficial layer in contact with the dura mater 
and a deep layer of delicate connective tissue trabeculae 
which connect the pia mater. The superficial arterioles are 
firmly attached to these trabeculae which must be cut to free 
the vessels. Venules underlying the arteries are generally 
free of arachnoid trabeculae. In contrast to the arterioles, 
large arterial trunks within the sulcus often appear as free 
with respect to the arachnoid. 

Drawing of the cortical pial vessels. Right 
hemisphere. Tributaries of the middle cerebral 
artery (RED), the anterior cerebral artery 
(GREEN), and the posterior cerebral artery 
(BLUE), and veins (BLACK). Taken from 
Duvernoy et al. (1981) Cortical Blood Vessels of 
the Human Brain. Brain Res. Bulletin 7:519-579
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Sources of the fMRI signal: Low frequency drifts

• Low frequency fluctuations in the signal (< 0.01 Hz) related to very slow head 
displacements, scanner-related drifts (e.g. heating), etc.  

• Different for each voxel (even neighbouring voxels)

Figures courtesy of Javier Gonzalez Castillo (NIH)
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Sources of the fMRI signal: Hardware-related instabilities

Figures courtesy of Javier Gonzalez Castillo and Vinai Roopchansingh (NIH)

Functional 
Connectivity Map 

(@InstaCorr)

• Nowadays, most MRI scanners use multichannel receiver coils for data acquisition

Malfunction of multichannel head coil
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Compensation of motion effects: Volumetric realignment
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• Translation (Δx, Δy, Δz) and rotation (yaw, pitch roll) to reference image

• Realignment does not fully compensate for motion-related signal changes. It 
cannot correct the data as if motion had never occurred. 

• Slice-wise motion correction approaches are becoming increasingly effective for 
compensating within-volume motion , e.g. SLOMOCO (Beall and Lowe, 2014), 
using EEG-cap as motion sensor (Zotev et al., 2012),

• Prospective motion correction (e.g. navigators or optical tracking systems) are 
also very effective ways of compensating motion occurring faster than the TR.
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Compensation of motion effects: Volumetric realignment

Realignment parameters: R(t) = {Δx, Δy, Δz, yaw, pitch roll}

+ the temporal derivatives: R(t-1)

+ the corresponding squares, i.e. R2(t) and R2(t-1)

6 regressors

12 regressors

24 regressors

+ the second temporal derivative: R(t-2) and R2(t-2) 36 regressors

+ 
+ 

+ 

More nuisance 
regressors 

More loss of degrees of 
freedom

Less statistical 
confidence

In this session do not miss Jonathan Power's talk to know how to create grayplots, and Molly 
Bright's talk to know more about critical questions for performing nuisance regression

R(t)
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Censoring and data interpolation
•  Censoring: Time points with large artefacts (e.g. excessive motion, hardware 

instabilities, etc.) are first identified and then zeroed, excluded from further 
analysis or interpolated with new data (e.g. linear or splines interpolation).

It is important to report methods used for censoring (criteria, threshold) and 
interpolation as well as the number of censored scans per subject or groups, and 

whether data was interpolated, zeroed, or nulled for subsequent analyses.

•  Time points are identified in time courses computed from:
• Realignment parameters: Multiple definitions of Framewise displacement (FD)
• DVARS: Root-mean square value of the differentiated fMRI signal
• Percentage of voxels with spike-like pattern at each time point (e.g. 3dDespike 

function in AFNI)

Power et al. (2015). Recent progress and outstanding issues in motion correction in resting state fMRI. Neuroimage 
105:536-551.
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Motion Simulation (MotSim)

• Nuisance regression uses the principal components from a dataset that simulates 
motion (MotSim) and its realignment (MotSimReg)

Patriat et al., (2017). An 
improved model of motion-
related signal changes in 

fMRI. Neuroimage 
144(Part A): 74-82
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Edge Brain Voxels

• Principal components with largest variance from voxels at the edges of the brain

Patriat et al., (2015). Using edge voxel information to improve motion regression for rs-fMRI connectivity studies. 
Brain Connect. 5(9): 582-596.

• Intersection of functional and 
anatomical edge brain mask to 
avoid inclusion of voxels in areas 
with signal drop-outs. 
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Phase-shifted Soft Tissue Regression (PSTCor)

• Compute correlation with time-
shifted time series from:

white matter ROIs, 
CSF from lateral ventricles 
soft tissues (i.e. face, skull)
physiological signals 

plus realignment parameters

• Optimal time-shifts are chosen 
for maximum cross-correlation 
with average GM signal.

Anderson et al. (2011). Network Anticorrelations, Global Regression, and Phase-shifted Soft Tissue Correction 
(PSTCor). Human Brain Mapping 32(6): 919–934. 

• Account for motion-related 
effects and additional noise 
and artefactual fluctuations 
(e.g. physiological noise)
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Component Based Noise Correction Method (CompCor)

• Principal Components (PCs) explaining the highest variance from voxels within 
eroded WM and ventricles CSF anatomical masks (aCompCor), voxels with 
largest temporal standard-deviation (tCompCor), or combination of both.

Behzadi et al., (2007). A Component Based Noise Correction Method (CompCor) for BOLD and Perfusion Based 
fMRI. Neuroimage 37(1): 90-101.

Tissue masks for aCompCor

White matter 
eroded
(WMe)

Large Ventricles 
eroded
(LVe1-4)

Average spectra computed by aCompCor (similar for tCompCor)

N
or

m
al

iz
ed

 P
ow

er
Frequency (Hz)

Respiratory Cardiac

• It is able to account for physiological fluctuations without the need of external 
recordings.

• Determining the optimal number of PCs is 
an open question (e.g. fixed number vs. % 
of variance)
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Anatomy-based Correlation Correction (ANATICOR)

Jo et al., (2010). Mapping Sources of Correlation in Resting State FMRI, with Artifact Detection and Removal. 
Neuroimage 52(2): 571–582.

Average signal over 
WMe voxels inside 20 

mm radius

Figure adapted from Box Cox (AFNI)

LOCALIZED HARDWARE INSTABILITIES

Voxel-dependent 
nuisance regressors

BEFORE  
ANATICOR

AFTER 
ANATICOR

White matter 
eroded
(WMe)
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EDA techniques for FMRI
• are mostly multivariate

• often provide a multivariate linear decomposition:  

Data is represented as a 2D matrix and 
decomposed into factor matrices (or modes)

FSL Documentation: http://fsl.fmrib.ox.ac.uk/fslcourse/lectures/melodic.pdf 

Independent Component Analysis (ICA) based Denoising

Your favourite ICA algorithm (e.g. GIFT, MELODIC)

fMRI dataset

Signal (BOLD)  
ICs

Noise & Artefact 
(non-BOLD) ICs

Non-AggressiveNuisance 
Regression Aggressive

Denoised fMRI 
dataset

Denoised fMRI 
dataset

22

Your favourite ICA classification 
(manual, semi-automated or automated)

ICA viewer very useful
(e.g. Melview, FSLeyes)

Computation of spatial and temporal features for each IC



Independent Component Analysis (ICA) based denoising
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• Manual Labelling: GOLD standard IF AND ONLY IF done by experts, time 
consuming, difficult reproducibility within and across raters. 

Kelly et al., (2010). Visual inspection of independent components: Defining a procedure 
for artefact removal from fMRI data. J Neurosci Methods 189(2): 233–245.

• Automated or Semi-automated classification: Distinguish between signal-
related (BOLD), and noise- or artefact-related (non-BOLD) components.

Algorithms: Support Vector Machines, Linear Discriminant Analysis, Decision Trees,  
Naïve Bayes, (Sparse) logistic regression, K-Nearest Neighbourhood, Random Forests, 
etc, or ensemble of classifiers.

Spatial features: spatial frequency, entropy and smoothness, fraction of IC map 
within GM, CSF, WM, edges of the brain, etc. 

Temporal features: power fraction above a certain frequency, correlation with 
realignment parameters, spectral distribution, autoregressive properties, etc. 

Griffanti et al. (in press). Hand classification of fMRI ICA noise components. Neuroimage

Check out Ludovica Griffanti's talk on this session for more ICA-based denoising
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Denoising physiological noise with external recordings

0 1 2 3 4 5 6 7 8 9 10 
time (s)

Respiration signal

Pulse Oximeter signal (or ECG signal)

MR images
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RETROICOR

Glover et al., (2000). Image-based method for retrospective correction of physiological motion effects in fMRI: 
RETROICOR. Magn Reson Med. 44(1):162-167

Figures courtesy of Rasmus Birn (University of Wisconsin-Madison)
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istics. Cardiac pulsatility is often localized to edges of the
brain such as near sulci or in tissue regions close to vessels
such as the superior sagittal sinus. Some respiration-in-
duced fluctuations result from longer-range effects such as
small bulk movement of the head or magnetic field mod-
ulations from the changing state of the thoracic cavity.
Image noise from this respiration component therefore
tends to span the entire brain. In this case, noise associated
with respiratory function occupies a smaller extent in
k-space than circulatory-induced noise. However, as
shown in Fig. 4, many regions of the brain have localized
motion components tied to the respiratory cycle, perhaps

through brainstem motion. These effects are localized in a
fashion similar to that of cardiac motion and thus occupy
a similarly broad extent in k-space.

Retrospective correction methods that operate in
k-space are limited to those spatial frequencies for which
the SNR is adequate to ensure a good fit of the Fourier
series to the data. This region includes only components
close to the k-space origin, so that correlations in image
space are introduced by the correction. This is not harmful
for global respiration noise because of its low spatial fre-
quency distribution, but can be detrimental for cardiac-
induced noise or localized respiratory noise, since there

FIG. 3. RETROICOR method applied to ROI time-series data acquired at TR ! 250 msec. (a) Raw data (") and y# cardiac fit (*) plotted vs.
phase in cardiac cycle; (b) same data plotted vs. phase of respiratory cycle (") and corresponding respiratory y# fit (*). Only one-fourth of
the 750 data points are plotted for clarity. Spectra of time series (c) without correction; (d) with cardiac correction alone; (e) with respiratory
correction alone; (f) with both corrections. In this case the cardiac and respiratory spectra are resolved with peaks near 0.8 and 0.15 Hz,
respectively.

FIG. 4. Left: Maps of noise distributions for image data acquired at TR ! 250 msec corresponding to Fig. 3, showing (top) cardiac
components and (bottom) respiratory components. The three columns depict maps that are uncorrected, corrected with RETROKCOR, and
corrected with RETROICOR, respectively. In this case the cardiac-related noise is highly localized, whereas the respiratory noise is more
diffuse but shows some focal noise foci medially. Right: Localizer showing slice location, and T*2-weighted image.

166 Glover et al.
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Low frequency fluctuations in respiratory volume (RVT)

Birn et al. (2006). Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in 
fMRI. Neuroimage 31(4):1536–1548.

• Variations in respiratory rate can be reduced by regressing out changes in 
respiratory volume (RVT) that are assumed to correlate with fluctuations in 
arterial CO2 concentrations.

approximately 0.03 Hz during rest (see Fig. 1A). These variations
were typically more pronounced for resting runs compared to task
runs. Respiration depth during the lexical task varied by 19.1% T
8.6%. When subjects were cued to breathe at a constant rate and
depth, respiration depth varied by 17.9% T 4.2%. These respiration
changes were significantly correlated with fMRI signal changes,

particularly in highly vascular regions, such as gray matter and
large vessels (see Fig. 2). In the posterior cingulate, 76% of resting
and lexical runs (i.e. time series without an explicit modulation of

respiration) were significantly correlated with respiration changes,
while in the inferior occipital cortex, up to 90% of the resting and
lexical runs were significantly correlated. This correlation was

predominantly negative, with fMRI signal increases resulting from
decreases in respiration depth, at an average latency of 5.4 s
(averaged over voxels negatively correlated with the respiration

volume per time with a significance of Z < !5.4, P < 10!7

uncorrected). This latency varied for different voxels across the
brain. In addition, a positive correlation was observed when the

respiration volume per time was shifted on average by !0.9 s
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Low frequency fluctuations in respiratory volume (RVT)

approximately 0.03 Hz during rest (see Fig. 1A). These variations
were typically more pronounced for resting runs compared to task
runs. Respiration depth during the lexical task varied by 19.1% T
8.6%. When subjects were cued to breathe at a constant rate and
depth, respiration depth varied by 17.9% T 4.2%. These respiration
changes were significantly correlated with fMRI signal changes,

particularly in highly vascular regions, such as gray matter and
large vessels (see Fig. 2). In the posterior cingulate, 76% of resting
and lexical runs (i.e. time series without an explicit modulation of

respiration) were significantly correlated with respiration changes,
while in the inferior occipital cortex, up to 90% of the resting and
lexical runs were significantly correlated. This correlation was

predominantly negative, with fMRI signal increases resulting from
decreases in respiration depth, at an average latency of 5.4 s
(averaged over voxels negatively correlated with the respiration

volume per time with a significance of Z < !5.4, P < 10!7

uncorrected). This latency varied for different voxels across the
brain. In addition, a positive correlation was observed when the

respiration volume per time was shifted on average by !0.9 s
relative to the fMRI signal (averaged over voxels significantly
positively correlated with the respiration volume per time). Each

voxel that was correlated with the respiration volume per time
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latencies, with the positive correlation preceding the negative by an
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average of 10.3 s (see Fig. 3). (The reason that this value is larger
than the difference between the average latencies for the negative
and positive correlations (5.4 s and !0.9 s, respectively) is that this
value reports the average difference within each voxel, whereas the
significant positive or negative correlations were averaged over
different voxel pools.) Global fMRI signal changes during rest
were significantly correlated with changes in respiration volume

per time (CC = !0.50 T 0.13) at a latency of 8.8 s T 2.6 s. This
correlation and latency refer to the maximum negative correlation
between the global fMRI time course and the respiration volume

per time evaluated at 51 shifts from !10 s to +15 s. When the
global signal was correlated with the fMRI data, the resultant maps
were similar to maps of regions significantly correlated with

respiration volume per time changes.

The standard deviation of the fMRI signal over time was
greatest in gray matter and in regions corresponding to larger
vessels (see Fig. 4). The average temporal standard deviation over

the whole brain was 1.41%, with fluctuations as high as 10% in
vascular regions. These variations were reduced when the
RETROICOR correction was applied (from 1.41% to 1.29%,

averaged over all subjects) and further reduced when the
respiration volume per time was modeled (from 1.29% to 1.20%)
(see Fig. 5). Again, the largest improvement is seen in regions

corresponding to large vessels. While the temporal noise was
reduced by different amounts in different parts of the brain, in no
part of the brain was the standard deviation increased when the

additional respiration volume per time regressor was added. Only
decreases in the noise were observed. When the subject breathed at
a constant rate, the variation over time was reduced from 1.41% to
1.25%. This was further improved by the RETROICOR correction,

reducing the temporal variation to 1.08%.
The lexical decision task resulted in activations in the left and

right precentral gyrus, middle occipital gyrus, fusiform gyrus, and

inferior frontal gyrus. Decreases in the fMRI signal during task
performance were observed in the anterior cingulate, posterior
cingulate, precuneus, and the superior occipital gyrus (see Figs. 6A

and 7A). These regions have previously been implicated as part of
a Fdefault mode_ network—a set of brain regions generally active
during rest and ‘‘deactivated’’ for cognitively demanding tasks
(Greicius et al., 2003; Raichle et al., 2001). An unthresholded Z

score maps of these activations are shown in Fig. 8.
When corrections for fluctuations synchronous with the cardiac

and respiratory cycle (RETROICOR) were applied, the Z scores

for detecting signal changes correlated with the expected blocked
design BOLD response increased on average by approximately 1%
(from 7.8 to 7.9). This average was computed in each subject over

all voxels significantly active (or deactive) at a Z score > 5.3 (or
<!5.3), P < 10!7 uncorrected. When the respiration volume per
time was used as an additional regressor, the Z scores improved on

average by an additional 8% (from 7.9 to 8.5). This improvement
was greatest in activations that were near large vessels (see Fig. 9).

Fig. 2. Location of respiration changes: map showing for each voxel the

percentage of time series (out of a total of 16 runs from 10 subjects) where

the fMRI signal during rest was significantly (CC > 0.4, P < 10!6

uncorrected) correlated with the respiration volume per time (RVT)

changes. Signal changes are largest in gray matter and near large blood

vessels.

Fig. 3. Correlation with respiration volume per time: (A) Z scores of regions negatively correlated with the respiration volume per time (RVT) in one subject;

(B) regions positively correlated with the RVT in one subject. (C and D) Z score of correlating the RVT with fMRI time course (for two sample voxels, as

indicated by the arrows) at multiple shifts between the RVT and the time series. Positive shifts indicate a shift of the RVT forward in time relative to the fMRI

data (i.e. fMRI signal changes following respiration changes). (E and F) Similar maps as shown in panels A and B but averaged over 10 subjects.
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average of 10.3 s (see Fig. 3). (The reason that this value is larger
than the difference between the average latencies for the negative
and positive correlations (5.4 s and !0.9 s, respectively) is that this
value reports the average difference within each voxel, whereas the
significant positive or negative correlations were averaged over
different voxel pools.) Global fMRI signal changes during rest
were significantly correlated with changes in respiration volume

per time (CC = !0.50 T 0.13) at a latency of 8.8 s T 2.6 s. This
correlation and latency refer to the maximum negative correlation
between the global fMRI time course and the respiration volume

per time evaluated at 51 shifts from !10 s to +15 s. When the
global signal was correlated with the fMRI data, the resultant maps
were similar to maps of regions significantly correlated with

respiration volume per time changes.

The standard deviation of the fMRI signal over time was
greatest in gray matter and in regions corresponding to larger
vessels (see Fig. 4). The average temporal standard deviation over

the whole brain was 1.41%, with fluctuations as high as 10% in
vascular regions. These variations were reduced when the
RETROICOR correction was applied (from 1.41% to 1.29%,

averaged over all subjects) and further reduced when the
respiration volume per time was modeled (from 1.29% to 1.20%)
(see Fig. 5). Again, the largest improvement is seen in regions

corresponding to large vessels. While the temporal noise was
reduced by different amounts in different parts of the brain, in no
part of the brain was the standard deviation increased when the

additional respiration volume per time regressor was added. Only
decreases in the noise were observed. When the subject breathed at
a constant rate, the variation over time was reduced from 1.41% to
1.25%. This was further improved by the RETROICOR correction,

reducing the temporal variation to 1.08%.
The lexical decision task resulted in activations in the left and

right precentral gyrus, middle occipital gyrus, fusiform gyrus, and

inferior frontal gyrus. Decreases in the fMRI signal during task
performance were observed in the anterior cingulate, posterior
cingulate, precuneus, and the superior occipital gyrus (see Figs. 6A

and 7A). These regions have previously been implicated as part of
a Fdefault mode_ network—a set of brain regions generally active
during rest and ‘‘deactivated’’ for cognitively demanding tasks
(Greicius et al., 2003; Raichle et al., 2001). An unthresholded Z

score maps of these activations are shown in Fig. 8.
When corrections for fluctuations synchronous with the cardiac

and respiratory cycle (RETROICOR) were applied, the Z scores

for detecting signal changes correlated with the expected blocked
design BOLD response increased on average by approximately 1%
(from 7.8 to 7.9). This average was computed in each subject over

all voxels significantly active (or deactive) at a Z score > 5.3 (or
<!5.3), P < 10!7 uncorrected. When the respiration volume per
time was used as an additional regressor, the Z scores improved on

average by an additional 8% (from 7.9 to 8.5). This improvement
was greatest in activations that were near large vessels (see Fig. 9).

Fig. 2. Location of respiration changes: map showing for each voxel the

percentage of time series (out of a total of 16 runs from 10 subjects) where

the fMRI signal during rest was significantly (CC > 0.4, P < 10!6

uncorrected) correlated with the respiration volume per time (RVT)

changes. Signal changes are largest in gray matter and near large blood

vessels.

Fig. 3. Correlation with respiration volume per time: (A) Z scores of regions negatively correlated with the respiration volume per time (RVT) in one subject;

(B) regions positively correlated with the RVT in one subject. (C and D) Z score of correlating the RVT with fMRI time course (for two sample voxels, as

indicated by the arrows) at multiple shifts between the RVT and the time series. Positive shifts indicate a shift of the RVT forward in time relative to the fMRI

data (i.e. fMRI signal changes following respiration changes). (E and F) Similar maps as shown in panels A and B but averaged over 10 subjects.
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Birn et al. (2006). Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in 
fMRI. Neuroimage 31(4):1536–1548.

• The Respiratory Volume Time (RVT) is correlated with the average GM (or 
global) time series at multiple lags, and usually the two lagged RVT with 
maximum positive and negative correlation are used as nuisance regressors.
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Low frequency fluctuations in cardiac rate (CR)

Shmueli et al. (2007). Low frequency fluctuations in the cardiac rate as a source of variance in the resting state 
fMRI BOLD signal. Neuroimage 38(2):306-320.

+2TR +5TR

+2TR

+5 TR

• Similar for variations in cardiac rate
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Respiration and Cardiac Response Functions (RRF & CRF)

Birn et al. (2008). The Respiration Response Function: The temporal dynamics of fMRI signal fluctuations related 
to changes in respiration. Neuroimage 40(2):644-654.

RRF (t) = 0.6t2.1e�t/1.6 � 0.0023t3.54e�t/4.25

• Instead of fitting 2 lags of the respiratory volume (RV) and cardiac rate (CR) time 
series, deconvolve their responses from the fMRI signal.

Chang et al. (2009). Influence of heart rate on the BOLD signal: The cardiac response function. 
Neuroimage 44(3):857-869.

RRF(t) was initially estimated as the 
average response to brief breath-holding 

events

CRF (t) = 0.6t2.7e�t/1.6 � 16p
18⇡

e�(t�12)2/18
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Chang et al. (2009). Influence of heart rate on the BOLD signal: The cardiac response function. Neuroimage 
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RVHRCOR: RVT(*)RRF and CR(*)CRF

Chang et al. (2009). Influence of heart rate on the BOLD signal: The cardiac response function. Neuroimage 
44(3):857-869.
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Modelling End-tidal CO2 fluctuations

Data analysis

Preprocessing
Functional images were pre-processed using FMRIB software

library (FSL; www.fmrib.ox.ac.uk/fsl) and included motion correc-
tion (Jenkinson et al., 2002), brain extraction (Smith, 2002), spatial
smoothing (10 mm FWHM), high-pass filtering (at N0.01 Hz), and
regression of six motion parameters. Time-locked heart-beat and respi-
ration artifactswere removed using the RETROICOR (Glover et al., 2000)
algorithm implemented in AFNI. Individual subject analysis was per-
formed in the original functional space.

Physiological response function
Voxel-wise brain responses to the three physiological signals were

simultaneously estimated as shown in Eq. (1):

Y ¼ XCRV " CRFþ XRVT " RRFþ XCO2
" RFCO2

þ ε ð1Þ

where y is thenormalized BOLD signal, Xs are thenormalized physiolog-
ical signals, and CRF, RRF, and RFCO2 are voxel-wise response functions
to CRV, RVT, and PETCO2 respectively. Each response function was
modeled as a Gaussian process, as described in Chang et al. (2009b),
using a squared exponential kernel to model the covariance matrix
(with a length scale parameter of 4 seconds and a 40-second response
length). The Gaussian model naturally accounts for variability in the
shape of the response function, and has been successfully applied to

estimating the BOLD hemodynamic response function (Goutte et al.,
2000).

The physiological signals were convolved with the corresponding
estimated responses at each voxel, and the results entered into a linear
regression model against the BOLD signal. The coefficient of determina-
tion (R2) associated with physiological signals was calculated at each
voxel, demonstrating the percentage of variance in the BOLD signal
explained by all of the three physiological signals. Moreover, the unique
effect of each of the physiological signals was calculated in a stepwise
regression procedure. That is, R2 for PETCO2was calculated as the differ-
ence between R2 of the model involving all three regressors and R2 of
the model with only CRV and RVT (Bianciardi et al., 2009; Cohen et al.,
2002).

The significance threshold was estimated using surrogate physio-
logical signals (Faes et al., 2004); for each data set, 100 sets of three
surrogate regressors (with the same spectral power as the original
physiological regressors but random phase) were generated and
entered into similar linear regression models. Since our interest is in
the spatial pattern of the physiological effects, we thresholded at
p = 0.01, uncorrected. Furthermore, the amplitude of the estimated
responses was calculated for each voxel. This amplitude demonstrated
the responsiveness of brain regions to physiological signals, as a stron-
ger effect of any of the physiological signals in the BOLD signal would
lead to stronger estimation of the corresponding response.

Responses of all voxels inside the brainwhere the effect is significant
were averagedwithin each subject and then averaged across subjects to

Fig. 1.Physiological signal calculation.A) End-tidal CO2 calculation; localmaxima of the breath-by-breath respiration CO2 levels are extracted and then re-sampled to the imaging sampling
rate (2 seconds for long TR and 0.323 seconds for short TR). B) Three physiological signals (ETCO2, CRV, RVT) of a typical subject. The interaction among the signals is unclear.
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• End-tidal CO2 (PetCO2) measurements can also be recorded during fMRI 
experiments via a nasal cannula or face mask.

Golestani et al. (2015). Mapping the end-tidal CO2 response function in the resting state BOLD fMRI signal: 
Spatial specificity, test-retest reliability and effect of fMRI sampling rate.  Neuroimage 104:266-277.

• The PetCO2 response function can be estimated in similar fashion to the cardiac 
and respiratory response functions

most significant in a selected set of areas. As shown in Fig. 6 we found
that across the group the effect of PETCO2, convolved with its response
function, is most significant in temporal and occipital cortices as well as
the thalamus, the superior parietal lobule, precuneus and the cingulate
gyrus. These findings are consistent with findings of Wise et al. (2004),
and coincide with regions exhibiting high reactivity to CO2 during
hypercapnic challenges (Rostrup et al., 2000; Tancredi et al., 2012) as
well as breathholds (Murphy et al., 2011). As previously noted (Birn
et al., 2006a), these regions are characterized by high blood volume
andflow, andmay thus be associatedwith higher BOLD signal sensitivity.

The amplitude of the response is also broadly consistent with the
previously documented measurements at 3 T (Blockley et al., 2011;
Kassner et al., 2010). The longer times-to-peak (TTP) in the occipital,
temporal and frontal regions are also consistent with findings during
CO2 challenges (Blockley et al., 2011; Donahue et al., 2014), and are in
general agreement with resting-state measures (Wise et al., 2004).
This pattern also coincides with those found by Chang and Glover
(2009b) in certain subjects.

Inter-subject and regional variability of the rs-fMRI response to CRV
and RVT

In all subjects, the inclusion of PETCO2 in the deconvolution along
with CRV and RVT explained more variability than not including
PETCO2. The shapes of our CRF estimates are largely consistent with
previous works (Chang, Cunningham et al., 2009; Cordes et al., 2014;

Falahpour et al., 2013), as seen in Fig. 4. However, our RRF has notice-
ably lower frequency (with a FWHM of ~10 seconds rather than
4.5 seconds, and TTP of 10 seconds rather than 3 seconds). This dis-
crepancy with earlier work is potentially attributable to the inclusion
of PETCO2 signal in the model and simultaneously estimating the
three response functions. Our results also show that CRF is the most
consistent response across different sampling rates, similar to reported
recently by Cordes et al. (2014).

CRV-related BOLD signal changes are most consistent in the white
matter across the group (Fig. 5), attributable to pulsatility of the cere-
brospinal fluid. Indeed, although white matter has negligible resting-
state neuronal signal contribution at 3 T, rs-fMRI fluctuations in the
white matter have been associated with global cerebrovascular health
(Makedonov et al., 2013). Averaging across subjects, the highest CRF
amplitudes are found in the medial frontal region, the cingulate/
precuneus region and the occipital cortex. The RVTwas the least consis-
tently associatedwith the rs-fMRI signal across subjects, but this point is
consistent with the literature (Chang and Glover, 2009b). Spatially, the
RRF is distributed in a similar manner to RFco2 (Fig. 6), suggesting sim-
ilar mechanisms. It is interesting to note, therefore, that the regions of
influence by RVT and PETCO2 do not fully overlap (Fig. 5). These obser-
vations support the existence of unique mechanisms through which
RVT and PETCO2 each influences the BOLD signal. Nonetheless, these
unique contributions are likely complemented by similarities between
the two signals, with RVT fluctuations potentially driving PETCO2 vari-
ability, and the latter feeding back into the system to produce further
RVT variability.

Paradoxically, in our data, the time-to-peak of RRF is distributed in a
manner not at all similar to that of RFco2. While this finding differs from
the results in Chang and Glover (2009b), the discrepancy may arise
because we now compare the PETCO2 response to the RVT response
directly, and not to RVT convolved with respiratory response function
(RVTRRF). In fact, as in our data, the work of Chang and Glover
(2009b) also shows the RRF being dominated by its negative peak,
whichmay in turn dominate the influence of the RVT on the rs-fMRI sig-
nal. This influence could bemediated by a long-term version of thoracic
circulatory control; that is, increase in respiratory volume → increase
in arterial pressure → baroreceptor feedback → decrease in heart
rate → decrease in cerebral blood flow → decrease in BOLD signal
(Chang and Glover, 2009b; Nakada et al., 2001). The distinct physiolog-
ical significance of RVT and PETCO2 in the context of rs-fMRI will be fur-
ther investigated in our future studies.

Across all response functions (i.e. CRF, RRF and RFco2), the occipital
lobe and precuneus regions appear to have the highest reactivity.
These regions are known for high resting oxidative metabolism
(Buckner et al., 2005; Raichle and Snyder, 2001) aswell as high baseline
blood flow (Chen et al., 2011; Raichle and Snyder, 2007; Zou et al.,
2009). However, it is evident that each regressor explains a different
spatial variance pattern, highlighting the distinction across these vari-
ous mechanisms through which they influence the rs-fMRI signal.

The role of rs-fMRI data sampling rate

As described earlier, we used short-TR accelerated acquisitions
for the majority of this work. This choice was motivated by concerns
that due to the low fMRI sampling rate, high-frequency physiological
noise would be heavily aliased into lower frequencies. Even though
RETROICOR can alleviate the effect of physiological artifacts, it is unable
to completely eliminate their effects (see Figure S2 in Supplementary
data). The use of short-TR acquisition is also likely to provide us with
more time points to model from a fixed scan time (Xu et al., 2013),
allowing us to derive voxel-wise response functions with higher statis-
tical significance.

Ourwork suggests that the response functions to low-frequency car-
diac and respiratory noise sources can be estimated using conventional
fMRI acquisition at low sampling rates (TR = 2 seconds) at least to the

Fig. 3. Comparison of the parameterized responses for the long-TR, short-TR data, and
reported responses in previous studies. PETCO2 response has a positive peak at 7 seconds
for both long- and short-TR data. Negative peak at 16 seconds that exists in short-TR data
could not be captured in the long-TR case. CRV has identical shape for long- and short-TR
and is very similar to the response reported in Chang et al (Chang et al., 2009a). RVT
response is consistent between long- and short-TR data, but it is delayed compared to
the response reported in Birn et al. (2008a).
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same extent as can be estimated using highly accelerated fMRI acqui-
sitions (TR = 0.323 seconds). Echoing findings by previous studies
(Cordes et al., 2014; Wise et al., 2004), our results show that potential
aliasing does not appear to fundamentally impede the estimation of
the response functions. However, our results also demonstrate that
the elimination of aliasing (through increased sampling rate) improves
the estimation of physiological effects in the BOLD signal, as reported
recently by Cordes et al. (2014). Our work also validates the utility of
multi-slice accelerated fMRI for high-speedwhole-brain imaging. How-
ever, we noted that when using accelerated fMRI data, we were able to
capture more high-frequency components of the response functions
compared towhen using conventional unaccelerated fMRI acquisitions.
The undershoot observed in RFCO2 is a potential example of this fact.
While the slice-accelerated data may contain inherent biases towards
high frequencies, the short-TR RRF estimate was in fact more slowly

varying than that estimated using long-TR data, supporting an actual
physiological origin of the higher frequency components in the RFco2
and CRF estimates. Furthermore, we showed that the slice-accelerated
data was associated with more reproducible response estimates than
the long-TR (conventional) data. This finding attributes a part of the
inter-individual variability in the BOLD response to physiological pro-
cesses to the limited sampling rate of conventional BOLD fMRI acquisi-
tions, mediated by the aforementioned aliasing and limited statistical
power. Nonetheless, the amount of variance explained by each physio-
logical variable was similar for short-TR and long-TR data.

Recommendations

The vascular action mechanisms of PETCO2 are more established
compared to those of RVT (Battisti-Charbonney et al., 2011; Iadecola,

Fig. 4. Spatial pattern of the brain regions affected by PETCO2, CRV, and RVT combined, for the short-TR data, shown as the percentage of variance explained by the three physiological
signals (R2). The threshold for each subject corresponds to p= 0.01 calculated from surrogate data.
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Subject-specific physiological response functions

Falahpour et al. (2013). Subject specific BOLD fMRI respiratory and cardiac response functions obtained 
from global signal. Neuroimage 72:252-264.

• The RRF and CRF were computed as the average physiological responses 
across subjects; yet, employing these responses, however, does not warrant for 
intra-subject variations in physiological response, particularly for clinical cases.   

• Derive the RRF and CRF from the global or average GM signal since we are in 
the physiological noise regime (thermal noise is averaged across voxels).

many voxels, lower flip angle data may still have sufficient informa-
tion from physiological changes. Therefore, we investigated whether
or not deriving RRFi and CRFi is feasible for lower flip angles. Single-

subject (S1) CRFi and RRFi functions obtained from various flip angles,
including those as low as 10°, are shown in Figs. 5A and B, respectively.
Figs. 5C and D show the normalized (by standard deviation) versions of

Fig. 3. Top panel: Single subject (S1) full model R2 maps overlaid on structural image for both RVHR and RVHRi models (threshold: pb0.001 uncorrected). Bottom panel: Group
average R2 maps for RVHR, RVHRi and GS regression models. Flip angle=90°.

Fig. 4. Group average R2 maps for each regressor separately. Top panel: heart rate regressors (HRCRF and HRCRFi), bottom panel: respiration volume regressors (RVRRF and RVRRFi).
Average over all subjects and scans 1, 2 and 6 acquired with FA=90°.

256 M. Falahpour et al. / NeuroImage 72 (2013) 252–264

linear regression was applied against the new regressors using
3dDeconvolve in AFNI. For comparison, the second regression model
was formed by including RV and HR time series convolved with
standard RRF and CRF functions (RVRRF=RV⁎RRF and HRCRF=
HR⁎CRF). The second regression model (RVHR) was processed in a
fashion similar to the first model (RVHRi). Full model R2 was used
to evaluate variance explained by the two regression models. Each
subject's R2 maps were transformed to the Talairach space and then
averaged over multiple subjects to generate the group maps. A com-
parison between R2 statistics of each regressor separately was also
performed for both RVHR and RVHRi models, in the same way.

Functional connectivity analysis

To prepare the data for the functional connectivity analysis, the
seed region ROI chosen was a 6 mm-radius sphere in the coordinate
(2L, 51P, 27S) in the Talairach space. These seed ROIs were then
transformed to the subject's original space. Connectivity maps were
generated by computing the correlation between the average time
series in the seed ROI and all other voxels in the brain. Correlation
maps were subsequently normalized to z-score by using a Fisher-Z
transformation. Z-score maps were transformed to the Talairach
space, and a group connectivity map was computed by applying a
one-sample t-test on the z-score maps. Analyses were performed on
the residual data after GS regression, RVHR correction, and RVHRi

correction. Functional connectivity maps were thresholded at |t|b5.03
(pb0.0001)).

Results

Fig. 2 shows the RRFi and CRFi response functions from the first
two scans (FA=90°) for all subjects. The correlation between GS and
standard RVHR model regressors RVRRF (RV convolved with RRF) and
HRCRF (HR convolved with CRF) was previously demonstrated
(Chang and Glover, 2009a), which indicates physiological noise contri-
bution to the GS. Table 1 illustrates the correlation coefficient between

GS and the new regressors, i.e., RVRRFi and HRCRFi, alongwith standard
ones.

Full model R2 for both RVHR and RVHRi models is illustrated in
Fig. 3. The upper panel in Fig. 3 shows representative single-subject
(S1) maps, and the lower panel shows group results for both physio-
logical models, along with the GS regression model. Values were
thresholded at pb0.001 (uncorrected).

Group R2 maps for each regressor separately are shown for both
RVHR and RVHRi models in Fig. 4. The upper panel in Fig. 4 shows
HRCRF vs. HRCRFi, and the lower panel shows the RVRRF vs. RVRRFi.
Group results in Figs. 3 and 4 represent scans with FA=90°.

Figs. 3 and 4 clearly show the expansion of the explained variance
in the brain when the individualized model was used, as compared to
standard model, on both single and group levels.

Effect of flip angle on the shape of cardiac and respiratory response
functions

With typically used high flip angles (90° or even Ernst angle for
gray matter and given TR) at the single-voxel level, physiological
noise is shown to dominate the fMRI time course (Gonzalez-Castillo
et al., 2011). Deriving physiological response functions from data
acquired with a higher amount of physiological noise may seem
more practical. However, because GS is derived through averaging

Fig. 2. The RRFi and CRFi for all subjects. For each subject the RRFi and CRFi obtained from two consecutive resting scans are shown (Rest1 blue, and Rest2 green lines, both acquired
with flip angle=90°).

Table 1
Correlation coefficients between GS and RVHR/RVHRi regressors (Rest1 data) “a”
indicates no pb0.0001 (uncorrected).

Subj. RVRRFi HRCRFi RVRRF HRCRF

1 0.67 0.61 0.16a 0.48
2 0.61 0.68 0.45 0.6
3 0.46 0.64 0.28 0.62
4 0.29 0.65 −0.02a 0.55
5 0.53 0.5 0.06a 0.46
6 0.48 0.39 0.23a 0.24a

Ave 0.51 0.58 0.19 0.49

255M. Falahpour et al. / NeuroImage 72 (2013) 252–264

run 1

run 2
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Accounting for continuous blood pressure recordings

Murphy et al. (2011). The association between pulse wave velocity, as a marker of sympathetic tone, and resting 
state BOLD signals. Proceedings of 19th Annual Meeting ISMRM, p. 3561

• Changes in blood pressure can also be monitored with MR-compatible continuous 
blood pressure devices in order to minimise intrinsic fluctuations related to cerebral 
autoregulation.

Whittaker et al. (2016). Beat-to-beat blood pressure fluctuations are present in time-frequency dynamics of resting-
state fMRI. Proceedings of 24th Annual Meeting ISMRM, p. 0309

• Continuous blood pressure traces have been observed to strongly correlate with 
the global signal.
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Multi-echo FMRI

TR ...
time (s)

Single-echo fMRI (your standard fMRI acquisition)

TE = 29 ms

time (s)

according to these p-values. Furthermore, these F-values can be averaged,
weighted by total signal power
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where i is the TE index, n is the total number of echoes, andΔSTEi is the co-
efficient of the reference function and the time course at TEi. This produces
two summary statistics, κ and ρ,
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where v is the voxel index,m is the number of voxels in the brain. κ and ρ
reflect the goodness of fit to ΔR2* and ΔS0 models respectively and
convey a representative F value for the voxels with the largest signal

changes. F-values are weighted by signal power so that κ and ρ are less
representative of F-values for the small component signal changes,
which are more affected by ICA estimation error. κ and ρ are used to
rank how well components of linear models (here corresponding to ICA
component time courses) agree with signal changes described by ΔR2*
and ΔS0 signal models.

Methods

Subjects

Nine right-handed healthy volunteers participated in the study
(7 males, 2 females). Informed consent was obtained under an
approved National Institute of Mental Health protocol.

Data acquisition

Imaging was performed on a General Electric (GE) 3 Tesla Signa
HDx MRI scanner (Waukesha, WI). The scanner's body coil was
used for RF transmission, and an 8-channel receive-only head coil
(GE, Waukesha, WI) was used for signal reception. High-order shim-
ming was performed to minimize field inhomogeneity.

Anatomical images were acquired using a T1-weighted MPRAGE se-
quence (FOV 240mm, 224×224 in-plane resolution, TI 725 ms, SENSE

Fig. 1. Shown are three echo simulations of BOLD (R2* change) and non-BOLD (S0 change) signals as a function of echo time (TE). The left column shows how the signal evolves for
non-BOLD effects and the right column shows how the signal evolves for BOLD effects. The top row shows the signal during state x (no activation) and state y (activation). This top
row demonstrates how the decay curves between rest and activation change in a different manner depending on if there is a change in (a) S0 or (b) R2*. The middle row shows the
difference (y−x) signal for (c) change in S0, and (d) change in R2*. The bottom row shows the percent signal change (y−x)/0.5(x+y) for (e) change in S0, and (f) change in R2*.

1761P. Kundu et al. / NeuroImage 60 (2012) 1759–1770

TE

• No SAR cost, as there are not 
additional excitation pulses

• Slight increase in TR to acquire 
additional echoes

• Slight decrease in spatial 
resolution to ensure last echo 
has signal

Multi-echo fMRI (your advanced fMRI acquisition)

TE1= 14 ms TE3 = 44 msTE2 = 29 ms

TE1 TE3TE2

Slide courtesy of Javier Gonzalez Castillo (NIH)
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Multi-echo FMRI: Optimal combination to maximize CNR

• We have Ne pseudo-concurrent signals, why not simply combine them to 
reduce the uncorrelated noise present in each individual signal?

Ŝ(x, t) =
NX

n=1

S(x, t, TE
n

) · w
x
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• Optimizes contrast-to-noise ratio (CNR) 
with respect to single-echo signal.
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0	Single Echo Optimally Combined

Slide courtesy of Javier Gonzalez Castillo (NIH)

Posse et al. (1999). Enhancement of BOLD-contrast sensitivity by single-shot multi-echo functional MR imaging. 
Magn Reson Med 42(1):87-97

• Helps to recovers signal in regions with 
large signal drop-outs at standard 
single-echo acquisitions (i.e. inferior 
temporal, temporal pole, orbitofrontal). 



Denoising with Multi-echo FMRI: Dual-echo approaches

• Acquisition of 2 echoes (TE1 and TE2) with short TE1 for minimal T2*-weighting 
and high sensitivity to fluctuations in the net magnetization S0 (i.e. capturing 
motion-related signal changes, inflow effects and respiratory-related fluctuations)

• Short TE1 signal is used as nuisance regressor for the optimal TE2 (≈ T2*) signal. 

Bright & Murphy (2013). Removing motion and 
physiological artefacts from intrinsic BOLD fluctuations 
using short echo data. Neuroimage 64(6):526-537

• Shorter TE1 achievable with spirals (≈ 3 ms) than with EPI trajectories (≈ 10 ms)

Buur et al. (2009). A dual echo approach to removing 
motion artefacts in fMRI time series. NMR Biomed. 
22:551–560. 36

according to these p-values. Furthermore, these F-values can be averaged,
weighted by total signal power
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ΔS2TEi ; ð4Þ

where i is the TE index, n is the total number of echoes, andΔSTEi is the co-
efficient of the reference function and the time course at TEi. This produces
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where v is the voxel index,m is the number of voxels in the brain. κ and ρ
reflect the goodness of fit to ΔR2* and ΔS0 models respectively and
convey a representative F value for the voxels with the largest signal

changes. F-values are weighted by signal power so that κ and ρ are less
representative of F-values for the small component signal changes,
which are more affected by ICA estimation error. κ and ρ are used to
rank how well components of linear models (here corresponding to ICA
component time courses) agree with signal changes described by ΔR2*
and ΔS0 signal models.

Methods

Subjects

Nine right-handed healthy volunteers participated in the study
(7 males, 2 females). Informed consent was obtained under an
approved National Institute of Mental Health protocol.

Data acquisition

Imaging was performed on a General Electric (GE) 3 Tesla Signa
HDx MRI scanner (Waukesha, WI). The scanner's body coil was
used for RF transmission, and an 8-channel receive-only head coil
(GE, Waukesha, WI) was used for signal reception. High-order shim-
ming was performed to minimize field inhomogeneity.

Anatomical images were acquired using a T1-weighted MPRAGE se-
quence (FOV 240mm, 224×224 in-plane resolution, TI 725 ms, SENSE

Fig. 1. Shown are three echo simulations of BOLD (R2* change) and non-BOLD (S0 change) signals as a function of echo time (TE). The left column shows how the signal evolves for
non-BOLD effects and the right column shows how the signal evolves for BOLD effects. The top row shows the signal during state x (no activation) and state y (activation). This top
row demonstrates how the decay curves between rest and activation change in a different manner depending on if there is a change in (a) S0 or (b) R2*. The middle row shows the
difference (y−x) signal for (c) change in S0, and (d) change in R2*. The bottom row shows the percent signal change (y−x)/0.5(x+y) for (e) change in S0, and (f) change in R2*.

1761P. Kundu et al. / NeuroImage 60 (2012) 1759–1770

BO
LD

 se
ns

iti
vi

ty
 (Δ

S)

TETE1 TE2



37

Denoising with Multi-echo FMRI: ME-ICA

• BOLD and non-BOLD independent components are classified according to the 
TE-dependence of the ICA spatial maps.

Kundu et al. (2012). Differentiating BOLD and Non-BOLD Signals in fMRI Time Series Using Multi-Echo EPI. 
Neuroimage 60(3): 1759–1770.

Check out Prantik Kundu's talk on this session for more denoising with ME-fMRI

BOLDnon-BOLD
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Non-constant TR: Denoising with Multi-echo FMRI

Gonzalez-Castillo et al., (2016). Evaluation of multi-echo ICA denoising for task based fMRI studies: Block designs, 
rapid event-related designs, and cardiac-gated fMRI.. Neuroimage 141:452-468.
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(A) Subject 1: ρ = 263.5, κ = 11.2, rME-ICA,T1 Shift = 0.95

(B) Subject 2: ρ = 199.0, κ = 11.2, rME-ICA,T1 Shift = 0.81

(C) Subject 3: ρ = 165.3, κ = 14.5, rME-ICA,T1 Shift = 0.90

(D) Subject 4: ρ = 320.1, κ = 10.2, rME-ICA,T1 Shift = 0.98

(E) Subject 5: ρ = 237.8, κ = 11.6, rME-ICA,T1 Shift = 0.58

• Non-constant TR: Cardiac gating to freeze pulsation-brain movement (e.g. fMRI 
studies of brainstem, amygdala, hippocampus, thalamus), TR is triggered by the 
subject's response, variable sparse fMRI sampling, etc.

• Non-constant TR introduces a strong T1-related fluctuation in the fMRI signal 
that can be effectively removed by Dual-echo or ME-ICA approaches
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Phased-based methods

• MRI is inherently a complex signal with its real and imaginary part, or equivalently 
its magnitude and phase signal.

• Typically, the magnitude signal is only used in fMRI data analysis; 

Hagberg and Tuzzi (2014) Phase variations in fMRI time series analysis: Friend or Foe?

• The phase signal contains relevant information about magnetic field variations, 
e.g. differences in susceptibility in regions near air and tissue boundaries.



Phased-based regression for venous signal suppression
• The phase signal can be also used as nuisance regressor to remove the effect of 

large vessels and draining veins in Gradient Echo fMRI.

subtracted from the original magnitude signal. This fortu-
itous property is also being further explored. As far as
chest motion is concerned, our navigator echo eliminates
the phase fluctuations in the signal due to respiration-
induced local field changes, so band-limiting the analysis
to avoid Bo-induced phase variations is not critical in this
application. If navigator-echo correction is not used when
fitting in the temporal domain, the phase changes due to
respiration may dominate the chi-square minimization,
resulting in poorer fits.

My method has similar properties to the diffusion-
weighted suppression of macrovascular BOLD signals
(18,19) but does not require the use of a spin-echo EPI
sequence with large gradients, with the associated SAR
and noise issues. Figure 7 shows that there are many
voxels in which both a microvascular component and a
macrovascular component can be found. The maximum
likelihood estimator removes the macrovascular contribu-
tion in the voxel, leaving the microvascular contribution.
That is, the method handles partial volume effects cor-

rectly, at least in a least-squares estimator sense. Previ-
ously, we and several other groups used an approach in
which pixels that exceeded a certain percent change were
discarded, purportedly because they were large-vessel in
origin. The inadvisability of the threshold approach is
further underscored in Fig. 7. Here one can see that the
fractional change in the vessel was in fact less than in the
adjacent cortex. An amplitude threshold of 3% would
have eliminated the tissue signal and kept the vessel. The
method does not change the statistics of the activation
maps either. The microvascular map in Fig. 7 does not
show any additional active areas compared to the conven-
tional magnitude map.

While one cannot quantitatively estimate the vessel size
cutoff of my method without BOLD simulations that use
realistic vascular geometries, it should be noted that the
cutoff is determined by the SNR. My method relies on the
correlation of fluctuations in two independent NMR quan-
tities. The minimum justifiable chi-square of the fit is
determined by the noise in the signals, and the lower that

FIG. 6. a: Phase and magnitude time series
from a voxel in subject 1, which was devoid of
obvious visible veins and was located in GM.
b: Phase and magnitude time series from a
voxel in subject 1 which had an obvious vis-
ible vein and was immediately adjacent to the
voxel in Fig. 6a. The time series have been
displayed as zero mean to enable visualiza-
tion of the correlations between them, but the
scale for the phase remains correct, being in
radians. The time series of S and ! were fit as
described in Methods, and the corresponding
maximum likelihood estimator of S is shown
as Sest in c and d. The subtraction of this
estimator from the original magnitude time
series is shown for (e) the GM pixel and (f) the
pixel containing a vein. The vein BOLD signal
is effectively suppressed.

Suppression of Macrovascular BOLD Signals 7

Menon (2002) Postacquisition suppression of large-vessel 
BOLD signals in high-resolution fMRI. Magn Reson Med. 
47:1-9

Curtis et al. (2014). Phase based venous suppression in 
resting-state BOLD GE-fMRI. Neuroimage 100:51-59.
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results in incoherent 
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subtracted from the original magnitude signal. This fortu-
itous property is also being further explored. As far as
chest motion is concerned, our navigator echo eliminates
the phase fluctuations in the signal due to respiration-
induced local field changes, so band-limiting the analysis
to avoid Bo-induced phase variations is not critical in this
application. If navigator-echo correction is not used when
fitting in the temporal domain, the phase changes due to
respiration may dominate the chi-square minimization,
resulting in poorer fits.

My method has similar properties to the diffusion-
weighted suppression of macrovascular BOLD signals
(18,19) but does not require the use of a spin-echo EPI
sequence with large gradients, with the associated SAR
and noise issues. Figure 7 shows that there are many
voxels in which both a microvascular component and a
macrovascular component can be found. The maximum
likelihood estimator removes the macrovascular contribu-
tion in the voxel, leaving the microvascular contribution.
That is, the method handles partial volume effects cor-

rectly, at least in a least-squares estimator sense. Previ-
ously, we and several other groups used an approach in
which pixels that exceeded a certain percent change were
discarded, purportedly because they were large-vessel in
origin. The inadvisability of the threshold approach is
further underscored in Fig. 7. Here one can see that the
fractional change in the vessel was in fact less than in the
adjacent cortex. An amplitude threshold of 3% would
have eliminated the tissue signal and kept the vessel. The
method does not change the statistics of the activation
maps either. The microvascular map in Fig. 7 does not
show any additional active areas compared to the conven-
tional magnitude map.

While one cannot quantitatively estimate the vessel size
cutoff of my method without BOLD simulations that use
realistic vascular geometries, it should be noted that the
cutoff is determined by the SNR. My method relies on the
correlation of fluctuations in two independent NMR quan-
tities. The minimum justifiable chi-square of the fit is
determined by the noise in the signals, and the lower that

FIG. 6. a: Phase and magnitude time series
from a voxel in subject 1, which was devoid of
obvious visible veins and was located in GM.
b: Phase and magnitude time series from a
voxel in subject 1 which had an obvious vis-
ible vein and was immediately adjacent to the
voxel in Fig. 6a. The time series have been
displayed as zero mean to enable visualiza-
tion of the correlations between them, but the
scale for the phase remains correct, being in
radians. The time series of S and ! were fit as
described in Methods, and the corresponding
maximum likelihood estimator of S is shown
as Sest in c and d. The subtraction of this
estimator from the original magnitude time
series is shown for (e) the GM pixel and (f) the
pixel containing a vein. The vein BOLD signal
is effectively suppressed.
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subtracted from the original magnitude signal. This fortu-
itous property is also being further explored. As far as
chest motion is concerned, our navigator echo eliminates
the phase fluctuations in the signal due to respiration-
induced local field changes, so band-limiting the analysis
to avoid Bo-induced phase variations is not critical in this
application. If navigator-echo correction is not used when
fitting in the temporal domain, the phase changes due to
respiration may dominate the chi-square minimization,
resulting in poorer fits.

My method has similar properties to the diffusion-
weighted suppression of macrovascular BOLD signals
(18,19) but does not require the use of a spin-echo EPI
sequence with large gradients, with the associated SAR
and noise issues. Figure 7 shows that there are many
voxels in which both a microvascular component and a
macrovascular component can be found. The maximum
likelihood estimator removes the macrovascular contribu-
tion in the voxel, leaving the microvascular contribution.
That is, the method handles partial volume effects cor-

rectly, at least in a least-squares estimator sense. Previ-
ously, we and several other groups used an approach in
which pixels that exceeded a certain percent change were
discarded, purportedly because they were large-vessel in
origin. The inadvisability of the threshold approach is
further underscored in Fig. 7. Here one can see that the
fractional change in the vessel was in fact less than in the
adjacent cortex. An amplitude threshold of 3% would
have eliminated the tissue signal and kept the vessel. The
method does not change the statistics of the activation
maps either. The microvascular map in Fig. 7 does not
show any additional active areas compared to the conven-
tional magnitude map.

While one cannot quantitatively estimate the vessel size
cutoff of my method without BOLD simulations that use
realistic vascular geometries, it should be noted that the
cutoff is determined by the SNR. My method relies on the
correlation of fluctuations in two independent NMR quan-
tities. The minimum justifiable chi-square of the fit is
determined by the noise in the signals, and the lower that

FIG. 6. a: Phase and magnitude time series
from a voxel in subject 1, which was devoid of
obvious visible veins and was located in GM.
b: Phase and magnitude time series from a
voxel in subject 1 which had an obvious vis-
ible vein and was immediately adjacent to the
voxel in Fig. 6a. The time series have been
displayed as zero mean to enable visualiza-
tion of the correlations between them, but the
scale for the phase remains correct, being in
radians. The time series of S and ! were fit as
described in Methods, and the corresponding
maximum likelihood estimator of S is shown
as Sest in c and d. The subtraction of this
estimator from the original magnitude time
series is shown for (e) the GM pixel and (f) the
pixel containing a vein. The vein BOLD signal
is effectively suppressed.
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subtracted from the original magnitude signal. This fortu-
itous property is also being further explored. As far as
chest motion is concerned, our navigator echo eliminates
the phase fluctuations in the signal due to respiration-
induced local field changes, so band-limiting the analysis
to avoid Bo-induced phase variations is not critical in this
application. If navigator-echo correction is not used when
fitting in the temporal domain, the phase changes due to
respiration may dominate the chi-square minimization,
resulting in poorer fits.

My method has similar properties to the diffusion-
weighted suppression of macrovascular BOLD signals
(18,19) but does not require the use of a spin-echo EPI
sequence with large gradients, with the associated SAR
and noise issues. Figure 7 shows that there are many
voxels in which both a microvascular component and a
macrovascular component can be found. The maximum
likelihood estimator removes the macrovascular contribu-
tion in the voxel, leaving the microvascular contribution.
That is, the method handles partial volume effects cor-

rectly, at least in a least-squares estimator sense. Previ-
ously, we and several other groups used an approach in
which pixels that exceeded a certain percent change were
discarded, purportedly because they were large-vessel in
origin. The inadvisability of the threshold approach is
further underscored in Fig. 7. Here one can see that the
fractional change in the vessel was in fact less than in the
adjacent cortex. An amplitude threshold of 3% would
have eliminated the tissue signal and kept the vessel. The
method does not change the statistics of the activation
maps either. The microvascular map in Fig. 7 does not
show any additional active areas compared to the conven-
tional magnitude map.

While one cannot quantitatively estimate the vessel size
cutoff of my method without BOLD simulations that use
realistic vascular geometries, it should be noted that the
cutoff is determined by the SNR. My method relies on the
correlation of fluctuations in two independent NMR quan-
tities. The minimum justifiable chi-square of the fit is
determined by the noise in the signals, and the lower that

FIG. 6. a: Phase and magnitude time series
from a voxel in subject 1, which was devoid of
obvious visible veins and was located in GM.
b: Phase and magnitude time series from a
voxel in subject 1 which had an obvious vis-
ible vein and was immediately adjacent to the
voxel in Fig. 6a. The time series have been
displayed as zero mean to enable visualiza-
tion of the correlations between them, but the
scale for the phase remains correct, being in
radians. The time series of S and ! were fit as
described in Methods, and the corresponding
maximum likelihood estimator of S is shown
as Sest in c and d. The subtraction of this
estimator from the original magnitude time
series is shown for (e) the GM pixel and (f) the
pixel containing a vein. The vein BOLD signal
is effectively suppressed.

Suppression of Macrovascular BOLD Signals 7
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Take home message

• fMRI is very noisy. The BOLD effect due to neuronal activity is only 2-5% of 
the mean amplitude and the signal is corrupted by multiple noise components.

• Denoising is critical for both task and resting state fMRI. Numerous 
techniques are available for denoising the BOLD fMRI signal.

• Motion-related signal changes and physiological noise fluctuations are usually 
the main targets for denoising.

• Phase-based and multi-echo fMRI can help to improve cleaning the signal, but 
require extra attention at the time of data acquisition.

• There is no 'best' method for preprocessing and denoising, but there are 
incorrect methods.

ALWAYS LOOK AT THE DATA!! 
(BEFORE AND AFTER PREPROCESSING)
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A B S T R A C T

Blood oxygen-level-dependent functional magnetic resonance imaging (BOLD fMRI) has rapidly become a
popular technique for the investigation of brain function in healthy individuals, patients as well as in animal
studies. However, the BOLD signal arises from a complex mixture of neuronal, metabolic and vascular
processes, being therefore an indirect measure of neuronal activity, which is further severely corrupted by
multiple non-neuronal fluctuations of instrumental, physiological or subject-specific origin. This review aims to
provide a comprehensive summary of existing methods for cleaning the BOLD fMRI signal. The description is
given from a methodological point of view, focusing on the operation of the different techniques in addition to
pointing out the advantages and limitations in their application. Since motion-related and physiological noise
fluctuations are two of the main noise components of the signal, techniques targeting their removal are
primarily addressed, including both data-driven approaches and using external recordings. Data-driven
approaches, which are less specific in the assumed model and can simultaneously reduce multiple noise
fluctuations, are mainly based on data decomposition techniques such as principal and independent component
analysis. Importantly, the usefulness of strategies that benefit from the information available in the phase
component of the signal, or in multiple signal echoes is also highlighted. The use of global signal regression for
denoising is also addressed. Finally, practical recommendations regarding the optimization of the preprocessing
pipeline for the purpose of denoising and future venues of research are indicated. Through the review, we
summarize the importance of signal denoising as an essential step in the analysis pipeline of task-based and
resting state fMRI studies.

1. Introduction

The functional magnetic resonance imaging (fMRI) signal is very
noisy. The blood oxygen-level-dependent (BOLD) response induced by
neuronal activity only represents a relatively small percentage of the
variance of the signal (Bianciardi et al., 2009a). Non-neuronal con-
tributions to the BOLD fMRI time series in a voxel include thermal
noise inherent to the electrical circuits used for MR signal reception,
instrumental drifts, artefactual signals due to hardware instabilities
(e.g. spiking), signal changes due to head motion, as well as a multitude
of physiological fluctuations of non-neuronal origin, including cardiac
and respiratory noise, changes in arterial C02 concentration associated
with varying respiration rate, vasomotion effects, and changes in blood
pressure and cerebral autoregulation mechanisms (Murphy et al.,
2013). The relative proportion of each component in the signal
depends on the instrumentation, particularly the field strength, as well
as on the neural and cerebrovascular physiology of each subject.

Since the value of the transverse relaxation rate (R2*) and its

change (ΔR2*) increases with higher MR field strengths, the signal
change of the BOLD response to neuronal activity also increases (van
der Zwaag et al., 2009). Besides, continuous developments in hardware
and acquisition sequences diminish the level of thermal noise and
system-related artefacts in the signal. Nevertheless, these benefits do
not always result in an increased contrast to noise ratio (CNR) of the
signal since, in general, the sensitivity of the signal to non-neuronal
physiological contributions also increases with higher field strengths.
For example, physiological noise is generally proportional to the signal
strength and when this noise contribution dominates, there is a plateau
in the signal to noise ratio (SNR) at typical voxel resolutions for whole-
brain imaging (Krüger and Glover, 2001; Triantafyllou et al., 2005;
2011; 2016). To benefit from the increased BOLD contrast at higher
field strengths, the thermal noise should be larger in magnitude than
non-neuronal physiological (i.e. cardiac and respiratory related) fluc-
tuations so that the temporal signal to noise ratio of the signal remains
within a linear regime as a function of the signal to thermal noise ratio.
Reducing the voxel size is one way to achieve this (Bodurka et al.,
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