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ABSTRACT

Subject motion during fMRI can affect our ability to accurately measure signals of interest. In recent years, frame censoring—that 
is, statistically excluding motion-contaminated data within the general linear model using nuisance regressors—has appeared 
in several task-based fMRI studies as a mitigation strategy. However, there have been few systematic investigations quantifying 
its efficacy. In the present study, we compared the performance of frame censoring to several other common motion correction 
approaches for task-based fMRI using open data and reproducible workflows. We analyzed eight publicly available datasets repre-
senting 11 distinct tasks in child, adolescent, and adult participants. Performance was quantified using maximum t-values in group 
analyses, and region of interest–based mean activation and split-half reliability in single subjects. We compared frame censoring 
across several thresholds to the use of 6 and 24 canonical motion regressors, wavelet despiking, robust weighted least squares, 
and untrained ICA-based denoising, for a total of 240 separate analyses. Thresholds used to identify censored frames were based 
on both motion estimates (FD) and image intensity changes (DVARS). Relative to standard motion regressors, we found consistent 
improvements for modest amounts of frame censoring (e.g., 1–2% data loss), although these gains were frequently comparable to 
what could be achieved using other techniques. Importantly, no single approach consistently outperformed the others across all 
datasets and tasks. These findings suggest that the choice of a motion mitigation strategy depends on both the dataset and the 
outcome metric of interest.
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INTRODUCTION

High-quality neuroimaging analysis depends in part on 
minimizing artifacts. Although advancements in hard-
ware and pulse sequence design have reduced many 
types of noise inherent to functional MRI, other sources 
remain (1). One prominent challenge is artifacts caused 
by subject head motion. Among other effects, head mo-
tion changes the part of the brain sampled by a partic-
ular voxel and can introduce changes in signal intensity 
through interactions with the magnetic field, which add 
noise to the data and make it harder to identify signals 
of interest.

The effects of head motion have received recent scru-
tiny in the context of resting-state functional connectivi-
ty. Because motion-related artifacts occur in many voxels 

simultaneously, they can introduce correlations in fMRI 
time series that are unrelated to BOLD activity, leading 
to inaccurate estimates of functional connectivity (2, 3). 
However, spurious activation is also of concern in task-
based functional neuroimaging, where it can lead to 
both false positives or a lower signal-to-noise ratio that 
can make it harder to detect a true activation of interest. 
As such, motion in task-based fMRI potentially introduc-
es a combination of both Type I and Type II errors.

Rigid body realignment—a mainstay of fMRI analysis 
for decades—goes some way toward improving corre-
spondence across images (4) but does not remove extra-
neous signal components introduced by movement (5). 
A common approach for mitigating motion-related arti-
facts is to include the six realignment parameters (trans-
lation and rotation around the X, Y, and Z axes, reflecting 
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estimated participant motion) as nuisance regressors in 
first-level models.

Beyond motion parameter inclusion, several data- 
driven strategies have been developed to reduce the in-
fluence of high-motion scans on estimated activations. 
Wavelet decomposition identifies artifacts by exploiting 
their non-stationarity across different temporal scales (6). 
The method has been applied in resting-state studies 
but is also applicable to task-based data. Independent 
component analysis (7) identifies artifacts based on the 
spatial distribution of shared variance. In robust weight-
ed least squares (8), a two-pass modeling procedure is 
used to produce a collection of nuisance regressors that 
are then included in the final analysis to weight frames 
by the inverse of their variance (that is, downweighting 
frames with high error).

An alternative motion correction strategy is “scrub-
bing” or “frame censoring” (9, 10). In this approach, 
bad scans are identified and excluded from statistical 
analysis. One approach is to do so by modeling them 
in the general linear model using nuisance regressors 
(i.e., “scan-nulling regressors” or “one-hot encoding”). 
Although frame censoring has received considerable 
interest in resting-state fMRI over the past several years 
(11, 12), it has not seen widespread use in the task-based 
fMRI literature. Censoring approaches involve some ef-
fective data loss, in that censored frames do not con-
tribute to the task-related parameter estimates, and that 
columns introduced to the design matrix to perform cen-
soring reduce the available degrees of freedom. There 
are different ways to quantify “bad” scans, and choos-
ing both an appropriate metric and associated thresh-
old can also be challenging. Thus, additional information 
over what threshold should be used for identifying bad 
frames—and relatedly, how much data are lost versus  
retained—is necessary to make informed decisions.

Although several published studies compare differing 
correction strategies (13–15), a drawback of prior work is 
that evaluation was often limited to a single dataset (see 
Supplemental Table 1). The degree to which an optimal 
strategy for one dataset generalizes to other acquisition 
schemes, tasks, or populations is not clear. With the in-
creased public availability of neuroimaging datasets 
(16, 17), the possibility of evaluating motion correction 
approaches across a range of data has become more 
feasible.

In the present work, we sought to compare the per-
formance of identical pipelines on a diverse selection of 
tasks, using data from different sites, scanners, and par-
ticipant populations. Although our primary interest was 
frame censoring, we considered seven different motion 
correction approaches:

1. six canonical head motion (i.e., “realignment pa-
rameter”) estimates (RP6)

2. 24-term expansions of head motion estimates 
(RP24)

3. wavelet despiking (WDS)

4. robust weighted least squares (rWLS)

5. untrained independent component analysis (uICA)

6. frame censoring based on frame displacement 
(FD)

7. frame censoring based on variance differentiation 
(DVARS)

This list is not exhaustive but is representative of ap-
proaches that are currently used and feasible to include 
in an automated processing pipeline.

Because it is impossible to determine a “ground truth” 
result with which to compare the effectiveness of these 
approaches, we instead considered four complementary 
outcome metrics: (1) the maximum group t-statistic both 
across the whole brain and in a region of interest (ROI) 
relevant to the task; (2) the average parameter estimates 
from within the same ROI; (3) the degree of test–retest 
consistency exhibited by subject-level parametric maps; 
and (4) the spatial overlap of thresholded group-level 
statistical maps. These metrics are simple to define yet 
functionally meaningful and can be applied to data from 
almost any fMRI study. In our view, Dice quantifies repli-
cability, the mean ROI value quantifies effect size (signal), 
and maximum-t quantifies signal to noise (effect size pe-
nalized by variance).

METHODS

Datasets

We analyzed eight studies obtained from OpenNeuro 
(17), several of which included multiple tasks or mul-
tiple participant groups. As such, the eight select-
ed studies provided a total of 15 datasets. The 
selection process was informal, but studies given pri-
ority included: (1) a clearly defined task; (2) a sufficient 
number of subjects to allow second-level modeling;  
(3) sufficient data to make test–retest evaluation possible; 
and (4) a publication associated with the data describing 
a result to which we could compare our own analysis.

A summary of the eight datasets selected is shown in 
Table 1 (acquisition details are provided in Supplemental 
Table 2). Additional information, including task details, 
modeling/contrast descriptions compiled from publica-
tion(s) associated with a given study, and any data irreg-
ularities encountered during analysis, is provided in the 
Supplemental Materials.
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Analysis

All scripts used in the study are available at https://osf 
.io/n5v3w/. Analysis was performed using Automatic 
Analysis version 5.4.0 ((18); RRID: SCR_003560), which 
scripted a combination of SPM12 (Wellcome Trust Centre 
for Neuroimaging) version 7487 (RRID: SCR_007037) and 
the FMRIB Software Library (FSL; FMRIB Analysis Group) 
(19) version 6.0.1 (RRID: SCR_002823). BrainWavelet 
Toolbox v2.0 (6) was used for wavelet despiking and 
rWLS version 4.0 (8) for robust weighted least squares.

To the extent possible, we used the same preprocess-
ing pipeline for all datasets (Figure 1a). Briefly, structural 
and functional images were translated to the center of 
the scanned volume, and the first four frames of each 
session were removed in functional images to allow for 
signal stabilization. This was followed by bias correction 
of the structural image, realignment, coregistration of 
the functional and structural images, normalization into 
MNI space using a unified segmentation approach (20) 
resampled to 2 mm isotropic voxels and smoothing of 
the functional images using an 8-mm FWHM Gaussian 
kernel.

Functional images were corrected for motion artifacts 
using each of the following approaches: (1) inclusion of 
six canonical motion estimates in the first-level model as 

nuisance regressors, (2) inclusion of 24 nuisance regres-
sors based on a second-order expansion of the motion 
estimates and first derivatives, (3) wavelet despiking,  
(4) robust weighted least squares, (5) untrained ICA 
denoising, (6) frame censoring based on framewise 
displacement (FD), or (7) differential variance (DVARS) 
thresholding (FD/DVARS thresholding is described later).

Statistical modeling was performed in SPM for all 
motion correction approaches. First-level modeling in-
cluded a contrast of interest described in a publication 
associated with the dataset for evaluation, followed by 
second-level analysis to produce group-level statistical 
maps. All first- and second-level t-maps were threshold-
ed at a voxelwise threshold of p < 0.001 (uncorrected).

Minor pipeline modifications were required for ro-
bust weighted least squares, wavelet despiking, and un-
trained ICA denoising. As recommended by developers 
of the rWLS toolbox, unsmoothed data were used for 
variance estimation and contrast maps were smoothed 
after modeling. For wavelet despiking, functional images 
were rescaled to a whole-brain median of 1000 across all 
frames before processing. The default toolbox settings 
(wavelet: d4, threshold: 10, boundary: reflection, chain 
search: moderate, scale number: liberal) were used. 
Finally, untrained ICA-based denoising was implement-
ed using ICA-AROMA (7) with additional processing 

Table 1. Summary of datasets analyzed

Dataset Reference Task and design 
#

subs
Age range

FD
(median ± SD)

Frames per 
subject

ds000102 Kelly et al. (21) Flanker (E) 22 22–50 0.11 ± 0.12 284

ds000107 Duncan et al. (22) 1-back (B) 43 19–38 0.08 ± 0.14 323

ds000114 Gorgolewski et al. (23) Motor (B) 10 50–58 0.14 ± 0.16 360

Covert verb (B) 10 50–58 0.11 ± 0.11 338

Overt word (B) 10 50–58 0.13 ± 0.12 144

Line bisection (B) 9 50–58 0.13 ± 0.18 468

ds000228 Richardson et al. (24) Film viewing (E) 122 3.5–12 0.21 ± 0.93 164

33 18–39 0.18 ± 0.27 164

ds001497 Lewis-Peacock and Postle (25) Face perception (E) 10 19–32 0.11 ± 0.12 1146

ds001534 Courtney et al. (26) Food images (E) 42 18–22 0.10 ± 0.16 552

ds001748 Fynes-Clinton et al. (27) Memory retrieval (E) 21 10–12 0.16 ± 0.36 438

20 14–16 0.12 ± 0.17 438

21 20–35 0.08 ± 0.17 438

ds002382 Rogers et al. (28) Word recognition (E) 29 19–30 0.14 ± 0.35 710

32 65–81 0.30 ± 0.34 710

B = blocked design; E = event-related design.
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FD and DVARS thresholding

Motion correction approaches based on frame censor-
ing required quantification of motion artifacts which 
could then be subjected to thresholding. Both framew-
ise displacement (FD) and differential variance (DVARS) 
were used. Framewise displacement was calculated as 
the sum of the six head motion estimates obtained from 
realignment, with a dimensional conversion of the three 
rotations assuming the head is a 50-mm sphere (11). 
DVARS was calculated as the root-mean-squared of the 
time difference in the BOLD signal calculated across the 
entire brain (29). As shown in Figure 2a, both metrics 
closely tracked artifacts apparent in voxel intensities and 
also each other. Although FD and DVARS in a given ses-
sion tended to be correlated (Figure 2b), they were not 
identical and could exhibit slightly different time courses 
and relative peak amplitudes (Supplemental Figure S1). 
As such, we explored the use of both measures.

Thresholds were determined by calculating FD and 
DVARS across all sessions in all subjects, which allowed 
values to be identified that resulted in 1%, 2%, 5%, 10%, 
and 20% frame violations across the entire dataset (Figure 
2c). We adopted this strategy rather than using a fixed 
value of FD or DVARS for several reasons. First, FD and 
DVARS magnitudes change with the TR of the data, be-
cause the TR is the sampling rate (for a given movement, 
sampling more rapidly will give smaller FD values, even 
though the total motion is the same). Second, different 
calculations of FD provide different values (11, 30, 31), and 

steps performed within FSL. Briefly, the unsmoothed 
coregistered functional image was demeaned, detrend-
ed, smoothed, and then nonlinearly warped to the FSL  
2 mm MNI152 template using FNIRT. The normalized 
functional image was then passed to AROMA for denois-
ing. This ICA implementation is not based on training 
data, and so we refer to it as “untrained” ICA to distin-
guish it from other ICA-based denoising approaches.

Evaluation of motion correction performance

Three measures were used to quantify the performance 
of each motion correction strategy, illustrated in Figure 
1b: (1) maximum t-value, (2) effect size, and (3) subject 
replicability. In the first measure, the maximum t-value 
occurring in the group level parametric map was ex-
tracted both at the whole-brain level and also within a 
region of interest relevant to the task. The effect size was 
quantified as the mean of all voxels within the ROI for 
each subject using the first-level beta maps. To evaluate 
subject replicability, multisession data were treated as 
a test–retest paradigm (the first session statistical map 
was compared to the second session in studies hav-
ing fewer than three sessions; even-numbered versus 
odd-numbered sessions were compared otherwise). 
Replicability was quantified as the Dice coefficient of 
thresholded first-level t-maps (p < 0.001, uncorrected) in 
each subject (restricted to the ROI).

Fig. 1. Schematic of processing pipeline and outcome measures. (a) Summary of preprocessing and model steps in com-
mon and differing across motion correction strategies. (b) Following statistical modeling, outcomes are summarized in 
mean parameter estimates and Dice overlap of thresholded single-subject maps (top) and maximum t-value from the group 
analysis (bottom). Dashed lines represent values obtained without motion correction.
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thus any absolute threshold would necessarily be metric 
specific. Finally, datasets differ in their tasks and popula-
tions, and we anticipated that a single threshold would not 
be suitable for all datasets. We, therefore, employed the 
frame-percent thresholding strategy to obtain a reason-
able range of results in all studies examined. To be clear, 
we do not propose a fixed-percent data loss approach as 
a “production” strategy. Indeed, a conventional denois-
ing approach would be to select an absolute threshold of 
acceptable motion based on experience (or preliminary 
data) from the target subject pool, task, scanner, and so 
on. However, given the variety of datasets examined here, 
we had no a priori guide as to what threshold values to 
use. Any fixed selection might censor no frames in some 
studies and too many in others. Therefore, we employed 

Fig. 2. Calculation of censoring thresholds in an example dataset (ds000228, 
children). (a) Representative grayplot (bottom) showing 500 randomly selected 
gray matter voxels. DVARS and FD for this session are plotted above. Spikes in 
the metrics identify frames contaminated by artifacts. (b) DVARS and FD are cor-
related but exhibit differing amplitudes and time courses. As such, the use of 
both measures was explored. (c) Metric values (here shown for DVARS) used for 
censoring were determined by plotting frameloss for each subject as a function of 
threshold (thin blue traces). Interpolation of the mean response (thick black trace) 
gives metric values corresponding to a data loss of 1%, 2%, 5%, 10%, or 20%. 
Box plot (inset) summarizes the results across all subjects at each threshold (box: 
25–75% percentiles; crosses: >3 SD outliers). (d) Histograms of data loss at each 
FD or DVARS target value across all subjects in this dataset. Red line indicates 
50% frameloss.

the frame-percent thresholding strategy to obtain an in-
formative range of results in all datasets. The threshold 
values that resulted from percent data loss targeting in 
these datasets are shown in Supplemental Figure S2 
and listed in Supplemental Table 3. The amount of data 
censored in each participant in a single study is shown in 
Figure 2d, and for all studies in Supplemental Figure S3.

To implement frame censoring, first-level modeling was 
repeated for each threshold with a separate delta func-
tion (i.e., a scan-nulling regressor) included in the design 
matrix at the location of each violation, which effectively 
removes the contribution of the targeted frame from the 
analysis. Although some prior studies of motion correc-
tion have censored one or more frames before or follow-
ing threshold violations (e.g., “augmentation” of (10)), we 
did not pursue such variations to avoid further expanding 
what was already a rather large parameter space.

Region of interest definition

A task-relevant ROI for each study/task was defined in one 
of three ways: (1) a 5-mm sphere (or spheres) centered at 
coordinates reported in a publication associated with the 
dataset; (2) a whole-brain Z-mask generated by a task-rele-
vant search term (e.g., “incongruent task”) in NeuroQuery 
(32) and thresholded Z > 3; or (3) a binarized probabili-
ty map in the SPM Anatomy Toolbox (33) for a task-rel-
evant brain structure or anatomical region (e.g., “V2”). 
Additional details on the ROI definition used in each anal-
ysis are provided in the Supplemental Materials.

RESULTS

Performance of the motion correction strategies orga-
nized by dataset is shown in Figure 3. Each panel in-
cludes a second-level thresholded t-map at the upper 
left (p < 0.001, uncorrected) using the “RP6” approach 
(six canonical motion parameters included as nuisance 
regressors). A contrast descriptor is given below the 
map. The ROI used for evaluation is shown at lower left 
with the source listed under the rendered image.

These results show there is a substantial variability in 
motion correction approaches, with performance de-
pending both on the data under consideration and the 
chosen performance metric. However, some general 
trends are apparent. Wavelet despiking tends to offer 
the best maximum t-value in both the whole-brain and 
ROI-constrained evaluation, with robust weighted least 
squares also exhibiting good performance (note the ROI-
constrained maximum t-value, shown in filled bars, are 
superimposed on the whole-brain results, shown in open 
bars in Figure 3). Conversely, untrained ICA gives consis-
tently poorer results although it offers the best maximum 
t-value in the ds000114 covert verb task. Performance 
of FD and DVARS frame censoring was highly variable, 
with the application of increasingly stringent thresholds 
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Fig. 3. Summary of motion correction algorithm performance for all datasets examined in the study. Each panel includes a representative thresholded  
group t-map at left (p = 0.001, uncorrected) for the given contrast with the ROI used for evaluation plotted below (AT = Anatomy Toolbox probability map;  
NQ = NeuroQuery search term; SP = 5 mm sphere centered at the described landmark. The ROI used in the analysis of ds000228 is defined in Table 2 of Richardson et al.  
(24)). At the center, ROI-restricted maximum t-values are superimposed on whole-brain results for each motion correction approach. Plots at right show individual- 
subject mean ROI effect size (top) and Dice coefficient for a split-half test–retest evaluation (bottom). Datasets that did not permit test–retest evaluation are noted “n/a.” 
Horizontal reference lines indicate the value obtained when no motion correction was used (dashed: ROI-constrained; dotted: whole brain).



 : 2022, Volume 2 - 7 - CC By 4.0: © Jones et al.

O R I G I N A L   R E S E A R C H   A R T I C L E

Fig. 3. (continued)
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Fig. 4. Summary statistics. (a) Whole-brain and ROI-restricted maximum t-values 
(left) mean effect size (upper right), and test–retest Dice coefficient (lower right) 
averaged across all datasets. Values were normalized to the no-correction values 
in the same dataset before pooling. (b) Performance summarized as a count of 
the datasets a given approach gave best results measured by the four perfor-
mance metrics (*p < 0.05).

improving performance in some datasets while decreas-
ing it in others. A somewhat consistent result is a loss of 
performance at the highest (20%) FD or DVARS threshold. 
As a rule, frame censoring performed better than RP6 and 
RP24 motion correction, although RP6 is competitive (if 
not optimal) in both ds000107 and ds001748.

The mean effect size shown in these results was largely 
insensitive to the selected motion correction approach. 
The two exceptions are wavelet despiking and untrained 
ICA, which produce consistently smaller values than the 
other approaches. This may reflect suboptimal parame-
ter selection in these algorithms (see Discussion). Robust 
weighted least squares offers competitive results in all 
datasets and notably superior results in ds002382 and 
the ds000114 overt word task. FD and DVARS frame cen-
soring neither improved nor degraded results regardless 
of threshold, producing a mean effect size indistinguish-
able from both the RP6 and RP24 approaches save for a 
few individual subjects.

The test–retest results also demonstrate a great deal 
of variability. The Dice coefficients exhibit substantial 
inter-subject differences, resulting in a mean perfor-
mance that is similar across all motion correction strat-
egies. However, excluding ds000102, ds001534, and the 
ds000114 line bisection task, all of which unfortunately 
provided an uninformative test–retest quantification, 
some trends can be identified. There is a decrease in 
both the FD and DVARS frame censoring results, es-
pecially at 20% thresholding. In general, all differenc-
es were minor, save for untrained ICA which performs 
notably better in the ds000114 motor task and notably 
worse in ds001487. The reason why three datasets ex-
hibit poor performance in a test–retest paradigm is un-
clear. Although ds000114 had a relatively small subject 
pool (n = 10), both ds000102 and ds001534 used a larger 
sample size (n = 22 and n = 42, respectively). Whatever 
the cause, it appears to be unrelated to the choice of 
motion correction, as in these exceptions all strategies 
performed equally well (or equally poorly, as it were).

A summary of univariate results is shown in Figure 4a, 
in which mean values of all four performance metrics 
are plotted. Several of the trends noted in the individ-
ual datasets remain apparent. For example, wavelet de-
spiking gave the largest whole-brain maximum t-value, 
whereas robust weighted least squares resulted in the 
best ROI-constrained performance. Light-to-moderate 
frame censoring resulted in improvement which then 
declined as more aggressive thresholding was applied. 
Robust weighted least squares produced the largest av-
erage effect size. Wavelet despiking and untrained ICA 
produce poor results as measured by this metric. Test–
retest performance is generally poorer for most motion 
correction strategies than that obtained using no motion 
correction, although rWLS exhibits good performance as 
measured by this metric.

An omnibus ANOVA identified a significant difference 
in the maximum-t data; however, Scheffe post hoc testing 

found no significant pairwise differences (p > 0.05). Both 
omnibus and post hoc testing of the mean ROI effect 
size show wavelet despiking differed significantly from all 
other approaches (p < 0.001). No significant differences 
were found in the test–retest Dice data.

A count summary of best algorithm performance is 
shown in Figure 4b, in which the best performing mo-
tion correction approach for each metric was identified 
in each of the 15 datasets, and the resulting proportions 
plotted as pie charts. The general trends evident in the 
averaged results are also apparent in these data although 
some additional features emerge. Robust weighted least 
squares offered the best performance on many data-
sets. Wavelet despiking gave the best maximum t-value 
in approximately half (whole-brain) or one quarter (ROI-
constrained) of the studies. Untrained ICA gave the best 
results across all four metrics in at least one dataset. 
Frame censoring performed similarly using either FD or 
DVARS. Finally, the performance of the RP6 and RP24 
approaches are middling, producing the best maximum 
t-value on only one or two datasets and, with one excep-
tion, never producing the best ROI mean or test–retest 
results. However, of these results, only the maximum-t 
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Fig. 5. Quantification of overlap in group-level maps. Dice coefficients com-
puted from group-level thresholded statistical maps obtained using each pair of 
motion correction strategies were assembled into a 15 × 15 Dice matrix. Overlap 
shown here for DV01 and DV20 is illustrative.

shown in Figure 6b. Dataset ds000107 appears at the 
right edge of the space, as might be predicted by a visu-
al review of the RDM. However, the other datasets pres-
ent no distinct pattern. A plot of the data using the first 
three dimensions similarly exhibited no distinct features, 
as did an examination of all 2D projections using the 
first five eigen-dimensions (see Supplemental Material 
Figure S4).

DISCUSSION

We explored the performance of a variety of approaches 
to correcting motion-related artifacts in task-based fMRI. 
The studies examined represent a broad range of task 
domains, including sensory, motor, language, memory, 
and other cognitive functions, with participants varying 
in age, sex, and other characteristics. Although we set 
out expecting to find converging evidence for an optimal 
strategy, our results demonstrate that the performance 
of motion correction approaches depends on both the 

Fig. 6. Multivariate analysis of group-level overlap. (a) Representational dissim-
ilarity matrix (RDM) illustrating the distance between motion correction patterns 
for each of the 15 datasets shown in Figure 5. (b) Using multidimensional scal-
ing (MDS), we visualized the relative distances between datasets in a reduced 
number of dimensions. Plotting the first two dimensions partially segregates 
ds000107 (cyan dot) but does not suggest other organizations of the datasets. 
Plots of other low-dimensional projections were qualitatively similar (see also 
Supplemental Figure S4).

performance of wavelet despiking and rWLS ROI mean 
effect size were statistically significant (p < 0.05).

Given the substantial variability in motion correction 
results across datasets, we next explored whether there 
may have been systematic differences between datasets 
that affected motion correction performance. We first 
calculated the pairwise similarity of thresholded (voxel-
wise p < 0.001) group maps from each dataset using Dice 
overlap (Figure 5). A consistent finding was a generally 
lower overlap between untrained ICA and the other mo-
tion correction approaches. Additionally, RP6, RP24, and 
rWLS tended to overlap less with other motion correc-
tion approaches and more with one another, although 
exceptions can be noted. Results for most datasets are 
generally mixed, although ds000228 (adults), ds001748 
(adults), and ds002382 (young adults) exhibit high over-
lap for all motion correction approaches (with the excep-
tion of untrained ICA).

Having generated Dice overlap maps for each dataset, 
we then explored the higher-order relationship between 
datasets using representational similarity analysis. We 
first calculated the distance between each Dice matrix 
using Pearson correlation, creating a representation-
al dissimilarity matrix (RDM) based on these distanc-
es (Figure 6a). We then used multidimensional scaling 
(MDS) to visualize the relationship between datasets. 
A plot of the data in the first two eigen dimensions is 
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data and the outcome of interest. We review our se-
lected metrics below—whole-brain and ROI-restricted 
maximum t-value, mean effect size, and test–retest  
repeatability—followed by some general comments on 
each motion correction approach.

Comparing outcome metrics

The use of whole-brain maximum t-value measured in 
group-level statistical maps has the advantage that it 
requires few assumptions about the data or the expect-
ed pattern of activity. However, we did not observe a 
consistent pattern regarding which motion correction 
approach optimized the whole-brain maximum t-value. 
The disparity was even evident between different partic-
ipant groups within a given study. For example, wave-
let despiking had the highest whole-brain t statistic in 
ds0001748 in teens but RP6 offered better performance 
in adults.

In addition to whole-brain statistics, we examined 
maximum t-values within a selected region of interest. 
Our rationale for doing so was that researchers interest-
ed in task-based effects frequently have prior intuitions 
about where the most informative results are localized. 
We found that motion correction approaches can exhib-
it substantially different whole-brain and ROI-restricted 
performance. In the ds000114 overt word task, for ex-
ample, RP6 offered the best performance within the 
motor cortex but poor performance in a whole-brain 
evaluation. Furthermore, frame censoring performance 
improved in some datasets but degraded in others as 
more stringent thresholding was applied. Obviously, a 
challenge inherent in such an evaluation is the actual ROI 
selection. Although we believe our choices are sensible, 
the selection of a different ROI set may well result in a 
different overall view of performance.

To complement these group-level measures, we also 
considered two single-subject metrics: mean effect size 
and test–retest repeatability. Effect size permits an ex-
amination of parameter estimates, and our use of aver-
aging offers a direct and simple quantification. However, 
with the exceptions of wavelet despiking and aggressive 
frame censoring (revisited below), we observed that ef-
fect size was largely insensitive to the choice of motion 
correction strategy, although less than the variability ob-
served in the maximum t-value. This suggests the main 
effect of different motion correction approaches is a 
differential reduction in model error variance. If param-
eter estimation is the primary result of interest, then the 
choice of motion correction strategy may not be critical.

The test–retest evaluation was perhaps the least help-
ful result, with the performance of all motion correction 
approaches essentially indistinguishable under this met-
ric. Although the outcome is disappointing, it should be 
noted that many of the studies included here were not 
designed to include a split-half repeatability analysis. It 

may be that more data per subject may be needed for 
this metric to be informative. In that sense, our analyses 
speak to the general challenges of obtaining reliable sin-
gle-subject data in fMRI (34–37), at least under conven-
tional scanning protocols (38).

Comparing motion correction approaches

No single motion correction approach exhibited optimal 
performance on all datasets and all metrics. Algorithm 
performance did not appear to be systematically related 
to the nature of the task, acquisition parameters, nor any 
feature of the data that we could identify.

Interestingly, computationally intensive approaches 
did not necessarily perform better than basic corrective 
measures. For some datasets, including six motion es-
timates as continuous nuisance regressors—a standard 
approach used in functional imaging for decades— 
performed as well or better than more sophisticated al-
gorithms that have emerged in recent years. Increasing 
the head motion estimate from a 6- to a 24-parameter 
expansion led to an improvement in some data but 
poorer results in others. Although such results are rath-
er counterintuitive, we can provide a few observations, 
even if these data do not currently permit conclusive 
recommendations.

Two motion correction approaches that showed 
generally strong performance were wavelet despik-
ing (WDS) and robust weighted least squares (rWLS). 
Together, these approaches offered the best perfor-
mance in approximately half of the datasets across all 
performance metrics (Figure 4b). In a statistical sense, 
robust weighted least squares might be seen as an 
optimal solution in that it uses the error in the model 
to differentially weight time points, reducing the influ-
ence of motion on parameter estimates. However, we 
found that other motion correction strategies offered 
similar, or superior, performance in several instances. 
One reason might be that rWLS linearly weights time 
points inversely related to their variance. To the degree 
that motion artifacts include a nonlinear component, 
linear weighting may not adequately (or not optimally) 
remove all of the artifacts.

In contrast to the good performance of wavelet de-
spiking as measured by maximum t-value, it gave nota-
bly low scores on mean effect size. However, this finding 
may simply reflect data scaling specific to the toolbox 
implementation. It should also be noted the wavelet de-
spiking toolbox offers 20 wavelets and additional options 
that control algorithm behavior such as thresholding and 
chain search selection. The results obtained here are 
what can be expected using the default settings recom-
mended by the toolbox developers, which includes a 
median 1000 rescaling of the functional data (and hence 
the lower parameter estimate). Thus, numeric compar-
ison to other approaches (that do not include rescal-
ing) is problematic. It also may be possible to improve 

https://paperpile.com/c/o36L4z/rir4+HTeb+8tO4+RFE3
https://paperpile.com/c/o36L4z/RJmO
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performance—including obtaining effect sizes concom-
itant with other motion correction approaches—by tun-
ing the algorithm.

One unexpected result was the relatively poor per-
formance of ICA denoising. Although individual ex-
ceptions exist, the approach produced consistently low 
scores on all evaluation metrics. However, it should be 
emphasized that we implemented ICA denoising using 
FSL’s ICA-AROMA, specifically selected because it does 
not require classifier training. More sophisticated ICA 
denoising tools such as MELODIC or ICA-FIX involve a 
visual review of training data to generate a set of noise 
classifiers based on the temporal, spatial, and frequency 
characteristics of identified artifacts (39, 40). These op-
tions were not considered presently because we sought 
to evaluate tools for motion correction that could be im-
plemented within a completely automated pipeline. The 
potential of ICA, in general, for denoising task-based 
data should not be dismissed; rather, our results only in-
dicate that the use of untrained ICA is probably subopti-
mal compared to other options, many of which are also 
less computationally intensive.

Frame censoring

Frame censoring has appeared in several task-based 
studies (41–43). In fact, it was an experience with frame 
censoring in the analysis of in-scanner speech produc-
tion (28) that motivated our interest in comparing mo-
tion correction approaches. We found that modest 
levels of frame censoring (e.g., 2–5% data loss) revealed 
a regional activation in high-motion subjects that ap-
peared in low-motion subjects but was not apparent 
when standard (RP6) motion correction was used. This 
suggested that using a discrete rather than a contin-
uous nuisance regressor may better preserve task- 
related variance in some applications. However, a more 
nuanced picture emerges from the present results, which 
suggest frame censoring is neither universally superior to 
nor worse than RP6. One possibility is that frame censor-
ing performance involves a complex interaction between 
data quantity and data quality. Because each censored 
frame introduces an additional regressor to the design 
matrix, eventually the reduction in error variance may be 
overwhelmed by a loss of model degrees of freedom or 
by the effective loss of task-related data. This is anec-
dotally supported by a decline in many of the metric re-
sults observed here at the most stringent FD or DVARS 
thresholds, an effect that was even more pronounced 
when 40% maximal censoring was explored in pilot work 
(data not shown).

One might argue that frame censoring should be 
based on a selected fixed threshold rather than a tar-
geted percent data loss. The present results offer some-
what mixed support for such a position. We investigat-
ed applying a (fixed) FD threshold of 0.9 to these data 
(Supplemental Figure S2), as used by Siegel and col-
leagues (10) in their exploration of frame censoring and 

as well as other studies (e.g., 43). In most of the datasets 
considered here, a 0.9 FD threshold would have resulted 
in less than 1% of frames being censored. This would be 
a reasonable amount of data loss and might lead to some 
improvements compared to a standard RP6 approach (al-
though we did not test this directly). However, ds000228 
(adults), ds001748 (teens), and ds002382 (YA) would have 
incurred a 1–2% data loss, ds001748 (child) and ds002382 
(OA) approximately 5% data loss, and ds000228/child 
approximately 13% data loss. These outcomes do not 
correspond to the best performance obtained across all 
approaches. Whole-brain or ROI-constrained maximum-t 
metrics are optimal at these values in some, but not all, 
datasets. Mean effect size and Dice coefficients add lit-
tle to the evaluation as they appear largely insensitive to 
frame censoring thresholds in this range. Taken togeth-
er, these results suggest that there is no single threshold 
value that will optimize frame censoring for all datasets 
and outcome measures. Although for individual investi-
gators it may indeed make more sense to develop cen-
soring criteria based on the range of FD or DVARS values 
present in their specific data, we also suggest that con-
sidering the amount of data lost at a chosen threshold is 
a useful metric to take into consideration.

Effects of FD-based versus DVARS-based thresholding

A consistent finding in the present study was that differ-
ent frame censoring outcomes are obtained depend-
ing on whether FD or DVARS is used for thresholding. 
This effect is most striking in the maximum t-values ob-
served in the individual studies (Figure 3). Systematically 
varying the FD and DVARS threshold values resulted in 
dissimilar or even contrary effects, with improvements 
observed in one metric often contrasting with worsening 
performance in the other. Although perhaps unexpected 
at first glance, this result reflects the nature of the two 
parameters and how censored frames are identified.

While FD is a direct quantification of estimated head 
motion, DVARS is potentially affected by any process 
that changes image intensity between frames. This in-
cludes not only head motion but also both neural and 
non-neural influences such as arousal (44), respiration 
(45), and cerebrospinal fluid flow (46). As a result, even 
though FD and DVARS are strongly correlated, they are 
not identical, and this disparity is responsible for the ob-
served differences in FD and DVARS performance. Even 
if the number of censored frames is equivalent (cf. Figure 
2d), a different collection of frames is targeted by each 
parameter at a given threshold. The relationship be-
tween FD- and DVARS-based thresholding can be con-
veniently demonstrated by considering the scatterplot of 
FD versus DVARS in Figure 2b. FD thresholding can be 
viewed in this plot as a vertical line moving right to left 
as the threshold is made more stringent. On the other 
hand, DVARS thresholding corresponds to a horizontal 
line moving top to bottom. Although there is a general 
overlap in the frames that violate both thresholds, the 

https://paperpile.com/c/o36L4z/MJlH+VP2p
https://paperpile.com/c/o36L4z/IDyB+fWdR+EPZ6
https://paperpile.com/c/o36L4z/GWc4
https://paperpile.com/c/o36L4z/TClJ/?noauthor=1
https://paperpile.com/c/o36L4z/IDyB/?prefix=e.g.%2C%20
https://paperpile.com/c/o36L4z/tYUf
https://paperpile.com/c/o36L4z/qX5m
https://paperpile.com/c/o36L4z/HdJo
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collections are not identical. Because the relation be-
tween the two parameters differs in each dataset (see 
Supplemental Figure S3), different trends in FD- and 
DVARS-based thresholded performance emerge.

Patterns of results across datasets

The similarity analysis of group-level maps (Figure 5) ex-
hibits several notable features. First, untrained ICA had 
relatively low overlap with other motion correction strat-
egies in most (but not all) datasets. Despite the frequent-
ly lower Dice scores, we did not see results for untrained 
ICA that were substantially mismatched with the other 
results. A review of the data reveals that the performance 
of untrained ICA seemed to result from less-extensive 
activation compared to group-level maps obtained using 
the other motion correction approaches. Stated differ-
ently, the untrained ICA activation maps were not “incor-
rect”; they were simply more focal (and thus overlapped 
less with other approaches).

Second, RP6 and RP24 produced a lower Dice over-
lap in many datasets. As these techniques are based 
on the use of continuous regressors, they represent an 
algorithmically distinct approach compared to tempo-
rally compact (wavelet) or discrete regressors (frame 
censoring). This effect can also be seen in the results of 
robust weighted least squares, which in some datasets 
(e.g., ds001497 and ds001534) produce the only notable 
Dice difference. As such, a tempting takeaway is that the 
motion correction strategies based on continuous re-
gressors form a performance family. However, when all 
performance metrics are considered collectively, the dis-
tinction between approaches becomes less clear.

Finally, some of the overlap performance appears to 
be related to data quality. For example, ds001748 and 
ds002382 explored identical tasks across multiple sam-
ples of approximately equal size. Both datasets included 
a high-motion group (the children group in ds0001748 
and the older adults in ds002382—see Table 1), and it is 
these Dice matrices that exhibit the greatest variability 
within the group. Conversely, the Dice matrices for the 
ds001748 adult and teen subject pools and the young 
adults in ds002382 are relatively uniform. This suggests 
that the choice of a motion correction strategy may be 
less important when working with a subject pool exhib-
iting only minor motion, at least when considering the 
spatial distribution of group-level activation.

These qualitative differences suggest Dice overlap 
might offer a means of categorizing the datasets and in 
so doing might provide a guideline for the selection of 
a motion correction strategy. A five-group categoriza-
tion of the datasets can be proposed based simply on 
their appearance in Figure 5: (1) ds000102 and ds000114 
(line bisection), (2) ds000114 (motor) and ds002382 (older 
adults), (3) ds000228 (adults), ds001748 (adults), and 
ds002382 (younger adults), (4) ds001748 (children), and 

(5) all remaining datasets. Yet, the quantitative results of 
our RDM-informed multidimensional scaling (Figure 6 
and Supplementary Figure S4) do not support this or-
ganization. Our goal was to identify common features 
of datasets using the overall pattern of motion correc-
tion results, which we operationalized using Dice over-
lap. However, this was not the case: MDS was unable to 
reduce the dimensionality of these data in a way that 
supplied meaningful information, and studies grouped 
together even using the informal visual organization 
described earlier differ in subject pools, task type, and 
other characteristics. Like the univariate metrics con-
sidered here, our multivariate analysis failed to clearly 
identify characteristics that might be used to identify an 
optimal motion correction strategy. It could be that a 
similar approach, but with hundreds of data sets, would 
be able to identify systematic differences in how different 
motion correction strategies worked on different types of 
data, which may be a promising direction for future work.

Other considerations

We have focused on retrospective correction—that is, 
strategies for dealing with motion in the existing data. 
A complementary approach would be to reduce head 
motion during acquisition. Protocols have been devel-
oped to do so, including movie viewing (47), custom 
head molds (48), and providing feedback to participants 
(49, 50). However, these have not yet been widely ad-
opted nor are all compatible with task-based fMRI. With 
increasing awareness of the challenges caused by partic-
ipant motion, perhaps greater interest in motion reduc-
tion (as opposed to motion correction) will follow.

A possibility that we did not explore is combining strat-
egies, as is commonly done in resting-state fMRI (e.g., 
frame censoring of outliers followed by including motion 
regressors from rigid-body realignment). However, this 
expands an already unwieldy parameter space of pos-
sible analyses (51–53). The use of simulated data, where 
“ground truth” can be known, may also prove beneficial 
in understanding how motion correction strategy can af-
fect the validity of our inferences.

Conclusions

The present results do not identify unequivocal guide-
lines for selecting a motion correction strategy. Given the 
variability observed across datasets, analyzed using iden-
tical processing pipelines, exploring multiple strategies 
in a given dataset may be the best way of reducing mo-
tion artifacts. Although it may be possible to revisit this 
issue in future work, our present results suggest that—
frustratingly—no single motion correction strategy will 
give optimal results in every instance, and that choices 
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require considering both the nature of the specific data 
of interest and the most relevant outcome measure.
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Supplemental Methods

Representational similarity analysis of group-level maps. Overlap of the thresholded group-level maps (p < 0.001, 
uncorrected) was quantified using a Dice coefficient computed for all pairs of denoising approaches. The result was a 
16 × 16 matrix for each dataset in which the (i,j)-th entry is the Dice coefficient quantifying overlap of the group-level 
map obtained using the i-th denoising strategy with that of the j-th denoising strategy. The overlap summaries were 
then used to explore a multivariate characterization of the denoising strategies. To this end, all pairs of the 15 dice 
overlap matrices were correlated and the coefficients were collected into a 15 × 15 distance matrix (distance = 1 − r). 
Multidimensional scaling (MDS; Matlab function cmdscale) was then applied to the distance matrix to obtain a low- 
dimensional approximation which was plotted and examined for clustering or other patterns.

Univariate statistical analysis. Maximum t values, mean ROI effect size, and Dice test–retest values for each denois-
ing strategy were pooled across all datasets and analyzed using a repeated-measures analysis of variance (Matlab 
functions fitrm and rmanova). Maximum t, effect size, and Dice test–retest score were normalized to the value obtained 
using no motion correction prior to pooling to account for variability across datasets. Pairwise differences were iden-
tified in post hoc testing using a Scheffe test (Matlab function multcompare).

An alternate evaluation of algorithm performance was explored by simply counting the number of datasets each 
approach gave the best result (i.e., the largest value) on a given metric. For the purpose of this analysis, FD and DVARS 
results were combined across all percent data loss categories, reducing the total number of categories to eight. 
Counts were then evaluated statistically using a binomial test (Zar 2010). Under the null hypothesis that all denoising 
strategies perform equally well, exhibiting the best performance on seven or more datasets by any one strategy is 
significant at the 0.05 level.
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Fig. S1. Correlation of FD and DVARS for all datasets. Each point is the FD (x) and corresponding DVARS (y) for a single frame, combined across all sessions and  
subjects for a given dataset. Each plot includes a least-squares line fit to the data.

Supplemental Results
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Fig. S2. FD values resulting from targeted percent data loss. The FD threshold value that resulted in 1%, 2%, 5%, 10%, or 20% data loss for a given dataset can be 
read from the y-axis. A horizontal line at FD = 0.9 is included to illustrate the data loss that would have occurred had an (arbitrary) fixed FD threshold of 0.9 been applied 
(given by the intersection or extrapolated intersection of the horizontal line with the graph of a dataset).
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Fig. S3. Frameloss histograms for all 15 datasets and for all FD and DVARS thresholds. Red line indicates 50% frame loss for reference. See also Figure 2 in the 
main text.
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Fig. S4. Scree plot and additional MDS results. (a) Eigenvalue magnitude normalized to that of the largest eigenvalue returned by a multidimensional scaling of the 
15 Dice overlap matrices shown in Figure 4 in the main text. Falloff suggests the dimensionality of the distance data is about five. The presence of negative eigenvalues 
indicates the dataspace is non-Euclidean. (b) Plot of first three eigen-dimensions reveals no obvious pattern in the data. (c) Projections of all possible pairs of the first five 
eigen-dimensions. The dataset ds000107 is segregated in some of the plots, but no other organization is apparent.
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Table S1. Some prior evaluations of motion correction in task-based fMRI

Study
#

Data
sets

Task(s) N Motion correction approaches Outcome measures

Current study 8 See Table 1 405
RP6, RP24, rWLS, WDS, untrained ICA, FD- and 
DVAR-based frame censoring

Whole-brain and ROI maximum 
t, mean effect size, Dice

Diedrichsen and 
Shadmehr (2005)

1 Hand controlled cursor targeting 15 Robust weighted least squares
t-Score, number of 
suprathreshold voxels

Hoffmann et al. (2015) 1
Auditory (SPM MoAE data 
contaminated with clinically 
relevant motion)

1 Rigid body alignment in SPM, FSL, AFNI, or AIR
Count of suprathreshold 
voxels, specious identification 
of motion

Huang et al. (2008) 1 Reading aloud 13 Linear interpolation over contaminated volumes Significant voxel counts

Johnstone et al. (2006) 1 Go/no-go, N-back 33
Rigid body registration with versus without 
including six realignment parameters as 
covariates

Whole-brain maximum t and 
cluster extent

Kay et al. (2013) 11** Visual 1–3 Custom (GLMDenoise), ICA Cross validation

Kochiyama et al. (2005) 1 Finger tapping 4 ICA
ROC true versus false-positive 
fraction

Lemmin et al. (2010) 1 Arm motion 7 Model-based motion estimation, RP6, rWLS
Reduction in ventricle 
activation

Liao et al. (2006) 1 Motor 10 Custom ICA
Standard deviation reduction in 
activated voxels

Mayer et al. (2019) 2*
AX continuous performance task, 
multimodal attention

110 RP12, RP24, untrained ICA, trained ICA
Percent change of true and 
false activation

Middlebrooks et al. 
(2017)

1 Motor task, language task 12
Realignment, DVARS scrubbing, trained ICA, 
ICA+scrubbing

Increased z-scores in areas of 
expected activation

Oakes et al. (2005) 1 Go/No-go, N-back 40
Rigid body registration in AFNI, AIR, 
BrainVoyager, FSL, or SPM

Maximum t and cluster extent

Siegel et al. (2014) 4*
String matching, rule switching, 
posner task

88
Motion estimates as nuisance regressors versus 
FD-thresholded frame censoring

Change in β estimate, error 
variance, or t-score 

Tierney et al. (2016) 1
Sentence comprehension and 
generation

42
Custom algorithm (FIACH) compared with RP6, 
RP24, FD frame censoring, rWLS, tCompCorr

ROI
restricted t-values and cluster 
extent

Tohka et al. (2008) 2*** Tone counting, weather prediction 32 Trained ICA Change in Z-scores

Wilke and Baldeweg 
(2019)

3
Verb generation, hand motor task, 
language task

84 Custom algorithm t-Value, # activated voxels, SNR

Xu et al. (2014) 1 Overt speech 18 Custom ICA PET cross validation

* Same scanner, multiple cohorts

** 11 task variations run on a single cohort

*** A training and a test cohort on the same scanner/tasks

Table S2. Acquisition details for datasets analyzed

Dataset Reference Scanner Field strength (T) TR (s) Voxel size (mm)

ds000102 Kelly et al. (2008) Siemens Allegra 3 2 3 × 3 × 4

ds000107 Duncan et al. (2009) Siemens Avanto 1.5 3 3 × 3 × 3

ds000114 Gorgolewski et al. (2013) GE Signa HDxt 1.5 2.5 4 × 4 × 4

ds000228 Richardson et al. (2018) Siemens Tim Trio 3 2 3 × 3 × 3

ds001497 Lewis-Peacock and Postle (2008) GE Signa VH/I 3 2 3.75 × 3.75 × 4

ds001534 Courtney et al. (2018) Philips Intera Achieva 2.5 2.5 3 × 3 × 3

ds001748 Fynes-Clinton et al. (2019) Siemens Magnetom Trio 3 3 2.5 × 2.5 × 2.5

ds002382 Rogers et al. (2020) Siemens Prisma 3 3.07 2 × 2 × 2

https://paperpile.com/c/vY3CwS/d4Sl/?noauthor=1
https://paperpile.com/c/vY3CwS/thmr/?noauthor=1
https://paperpile.com/c/vY3CwS/riyg/?noauthor=1
https://paperpile.com/c/vY3CwS/LRFR/?noauthor=1
https://paperpile.com/c/vY3CwS/fEeB/?noauthor=1
https://paperpile.com/c/vY3CwS/opkY/?noauthor=1
https://paperpile.com/c/vY3CwS/qvZd/?noauthor=1
https://paperpile.com/c/vY3CwS/Yj9x/?noauthor=1
https://paperpile.com/c/vY3CwS/DFpV/?noauthor=1
https://paperpile.com/c/vY3CwS/6Tb4/?noauthor=1
https://paperpile.com/c/vY3CwS/fd7A/?noauthor=1
https://paperpile.com/c/vY3CwS/bujQ/?noauthor=1
https://paperpile.com/c/vY3CwS/eNkk/?noauthor=1
https://paperpile.com/c/vY3CwS/0J8x/?noauthor=1
https://paperpile.com/c/vY3CwS/y8hD/?noauthor=1
https://paperpile.com/c/vY3CwS/Uoap/?noauthor=1
https://paperpile.com/c/vY3CwS/0cpen/?noauthor=1
https://paperpile.com/c/vY3CwS/qt8lB/?noauthor=1
https://paperpile.com/c/vY3CwS/jQmgV/?noauthor=1
https://paperpile.com/c/vY3CwS/gghrC/?noauthor=1
https://paperpile.com/c/vY3CwS/m30uz/?noauthor=1
https://paperpile.com/c/vY3CwS/QqdIO/?noauthor=1
https://paperpile.com/c/vY3CwS/IUU1r/?noauthor=1
https://paperpile.com/c/vY3CwS/FVl6y/?noauthor=1
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Table S3. DVARS and FD values at percent frameloss

FD DVARS

Dataset 1% 2% 5% 10% 20% 1% 2% 5% 10% 20%

ds000102 22.1 20.2 18.5 17.5 16.9 0.58 0.41 0.25 0.20 0.16

ds000107 32.3 29.5 26.8 25.3 24.2 0.52 0.41 0.27 0.20 0.13

ds000114
bisection

35.4 30.8 25.9 23.1 20.8 0.84 0.68 0.46 0.33 0.24

ds000114
covert verb

25.5 23.8 22.1 20.6 19.0 0.47 0.39 0.30 0.25 0.21

ds000114
lips motor

31.1 28.1 24.3 22.1 20.1 0.73 0.57 0.41 0.31 0.24

ds000114
overt word

33.7 31.8 28.6 26.3 23.7 0.57 0.44 0.35 0.28 0.21

ds000228
adults

30.1 25.3 20.9 17.4 15.1 0.99 0.77 0.55 0.41 0.33

ds000228
children

72.3 59.1 42.1 31.6 23.5 3.50 2.50 1.53 1.01 0.61

ds001497 284.6 251.3 219.4 198.3 179.6 0.60 0.45 0.33 0.24 0.18

ds001534 28.2 24.1 20.7 18.8 17.1 0.59 0.45 0.32 0.24 0.18

ds001748
adults

31.0 27.4 22.0 19.2 16.4 0.63 0.50 0.32 0.22 0.15

ds001748
children

58.0 50.5 38.4 30.0 23.5 1.55 1.19 0.81 0.57 0.37

ds001748
teen

58.7 50.1 35.9 28.6 23.7 1.07 0.76 0.48 0.33 0.22

ds002382
older adult

463.4 410.1 343.6 300.8 258.0 1.38 1.16 0.89 0.72 0.56

ds002382
young adult

382.0 324.3 258.8 222.1 193.2 1.16 0.85 0.55 0.38 0.27

Additional Dataset Details

Details of datasets used in the study are summarized below, including challenges or irregularities we encountered 
during analysis.

Accession Number: ds000102

Publication: Kelly et al. (2008)

Task: Slow event-related Eriksen flanker

Task details: Participants used one of two buttons to indicate the direction of a central arrow in an array of five arrows. 
In congruent trials, the flanking arrows pointed in the same direction as the central arrow; in more demanding incon-
gruent trials, the flanking arrows pointed in the opposite direction.

Acquisition: Siemens Allegra 3.0 T (TR = 2000 ms; TE = 30 ms; flip angle = 80, 40 slices, matrix = 64 × 64; FOV =  
192 mm; acquisition voxel size = 3 × 3 × 4 mm).

Number of subjects: 26; Age: 22–50 years (mean 32)

Contrast evaluated: incongruent correct > congruent correct

ROI: Neuroquery search term “incongruent task” and thresholded Z > 3

Notes: Functional data include a pronounced periodic artifact that appears unrelated to motion.
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Accession Number: ds000107

Publication: Duncan et al. (2009)

Task: One-back

Task details: A one-back task was used with four categories of visual stimuli: written words, pictures of common ob-
jects, scrambled pictures of the same objects, and consonant letter strings. Subjects were instructed to press a button 
if the stimulus was identical to the preceding stimulus (12.5% of the stimuli were targets). Each block consisted of  
16 trials from a single category presented one every second. A trial began with a 650 ms fixation cross, followed by 
the stimulus for 350 ms.

Acquisition: Siemens Avanto 1.5 T. The functional data were acquired with a gradient-echo EPI sequence (TR =  
3000 ms; TE = 50 ms; FOV = 192 × 192; matrix = 64 × 64, voxel size = 3 × 3 × 3 mm).

Number of subjects: 45 (23 Male); Age: 19–38 years (mean 25)

Contrast evaluated: Words > 0

ROI: 5 mm sphere at [−42 −62 −16] (left ventral occipital–temporal cortex). Coordinates are from Table 2 of Duncan 
et al. (2009).

Notes: Data from six subjects were excluded: two because of corrupt data, three due to data modeling errors that 
could not be corrected, and one due to an incompatible contrast definition. Removed spaces from event names in 
BIDS .tsv files.

Accession Number: ds000114

Publication: Gorgolewski et al. (2013)

Tasks: (i) lip movement, (ii) covert verb generation, (iii) overt word generation, (iv) line bisection. All tasks used the same 
subjects.

Task details: Lip movement: Lip poaching (15 s) interleaved with fixation at a cross (15 s). Covert verb generation: 
Subjects instructed to think of a verb following presentation of a random noun for 1 s. Overt word generation: Repeat 
words aloud presented via headphones; 30 s task / 30 s rest repeated six times. Line bisection: Judge by button press 
if a horizontal line was bisected exactly in the middle (landmark) or if a horizontal line was crossed or not crossed (de-
tection). Randomized presentation of six correct and four incorrect lines (525 ms presentation / 1100 ms response) in 
eight blocks.

Acquisition: GE Signa HDxt 1.5 T scanner with an 8-channel phased-array head coil. FOV = 256 × 256 mm, voxel size = 
4 × 4 × 4 mm, slice thickness 4 mm, 30 slices per volume, interleaved slices order, acquisition matrix 64 × 64, flip angle =  
90, TE = 50 ms, TR = 2.5 s, except for overt word repetition in which sparse sampling was used (TR = 5 s, “real TR”—
which we assumed meant “acquisition time/TA” = 2.5 s). Subjects were scanned twice, either two or three days apart.

Number of subjects: 10 (4 Male); age: 50–58 years (median 52.5).

Contrast evaluated: (i) Motor task: lip > hand+foot, (ii) Covert verb: task > 0, (iii) Overt word: task > 0, (iv) Line bisection: 
landmark > detection

ROI: (i) 5 mm spheres in bilateral motor cortex ([−56, −6, 26] and [62, 0, 28]). Coordinates taken from (Pulvermüller  
et al. 2006), (ii) Covert verb: Broca’s Area (BA 44 + BA 45 (left hemisphere only) from Anatomy Toolbox), (iii) Overt Word: 
same as lip motor task, (iv) Line bisection: lateral visual cortex (Anatomy Toolbox hoc3v+doc4v+hoc4lp).

Notes: The motor data included finger and foot tapping tasks that were not used because a mixture of left- and 
right-handed activation precluded straightforward second-level modeling. Subject 10 was excluded from the line bi-
section analysis as first level maps suggest the subject misunderstood task instructions (activation is left/right reversed).

Accession Number: ds000228

Publication: Richardson et al. (2018)

Task: Film viewing

Task details: Subjects viewed a 5.6-minute animated film with scenes classified as presenting either “pain” or “theory 
of mind” events.

https://paperpile.com/c/vY3CwS/LJ0sH
https://paperpile.com/c/vY3CwS/LJ0sH
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Acquisition: 3T Siemens Tim Trio using a standard Siemens 32-channel head coil. T1-weighted structural images were 
collected in 176 interleaved sagittal slices with 1 mm isotropic voxels (GRAPPA parallel imaging, acceleration factor of 
3; adult coil: FOV: 256 mm; kid coils: FOV: 192 mm). Functional data were collected with a gradient-echo EPI sequence 
in 32 interleaved near-axial slices aligned with the anterior/posterior commissure and covering the whole brain (EPI 
factor: 64; TR: 2 s, TE: 30 ms, flip angle: 90). Voxel size: Adults 3.13 × 3.13 × 3.13 mm; children either 3 × 3 × 3 mm or 
3.13 × 3.13 × 3.13 mm.

Number of subjects: Adults: 33 (20 female); age: 18–39 years (mean: 24.8). Children: 123 (64 female); age: 3.5–12 years; 
mean: 6.7).

Contrast evaluated: pain > theory of mind

ROI: Regions listed in Supplementary Table 2 of Richardson et al. (2018), modeled as a collection of 5 mm spheres.

Notes: There were insufficient sessions in this data for test−retest evaluation. Event files were missing from the original 
OpenNeuro listing and were added manually using information provided in the description. The event timing provid-
ed was converted to seconds from scans using the TR information.

Accession Number: ds001497

Publication: Lewis-Peacock and Postle (2008)

Task: Stimulus judgment / memory

Task details: Subjects viewed a total of 90 stimuli drawn from three categories: 30 famous people, 30 famous locations, 
and 30 common objects. They indicated (on a four-point Likert scale, using a stimulus–response box) how much they 
liked the celebrity, how much they would like to visit the location, or how often they encountered the object in every-
day life.

Acquisition: GE Signa VH/I 3T scanner. T1 (30 axial slices, 0.9375 × 0.9375 × 4 mm). Functional images: gradient-echo 
echo-planar (TR = 2000 ms; TE = 50 ms; 64 × 64 matrix coplanar with the T1 acquisition, voxel size = 3.75 × 3.75 ×  
4 mm).

Number of subjects: 10 (7 male); age: 19–32 years.

Contrast evaluated: Face > 0

ROI: Bilateral fusiform face area (Neuroquery search term “FFA” and thresholded Z > 3)

Notes: There were a total of six sessions in the data which were split into even and odd sessions for test–retest eval-
uation. The data on OpenNeuro is only the “LTM” portion of the experiment. Data from a working memory task de-
scribed in the associated publication are not included.

Accession Number: ds001534

Publication: Courtney et al. (2018)

Task: Food images paired with textural calorie content

Task details: Participants first viewed images of food paired with an accompanying image number (“foodimage”), and 
subsequently viewed these same food images paired with the corresponding calorie information (“calorieimage”). 
The presentation sequence of food images and jittered fixation trials were pseudo-randomized.

Acquisition: Philips Intera Achieva scanner. Anatomical images were acquired using gradient-echo sequence  
(TR = 9.9 ms; TE = 4.6 ms; flip angle = 8; 1 × 1 × 1 mm voxels). Functional images were collected using T2* fast field echo  
(TR = 2.5 seconds, TE = 35 ms, flip angle = 90, voxel size = 3 × 3 × 3 mm).

Number of subjects: 50 (50 M); age: 18–22 years (mean 19.7).

Contrast evaluated: labeled image > not labeled

ROI: Bilateral inferior parietal cortex (Anatomy Toolbox IPC_PF + IPC_PFcm + IPC_PFm + IPC_PFop + IPC_PFt + 
PIC_PGa + IPC + PGp).

Notes: Functional images in this data were scaled by 0.02 prior to processing.



 : 2022, Volume 2 - 24 - CC By 4.0: © Jones et al.

O R I G I N A L   R E S E A R C H   A R T I C L E

Accession Number: ds001748

Publication: Fynes-Clinton et al. (2019)

Task: Memory retrieval including autobiographical, episodic, or semantic conditions

Task details: One of 25 images of everyday life events was presented for 4 s, followed by a retrieval cue screen for  
8 seconds during which participants retrieve different long-term memories. The type of memory retrieval was manip-
ulated by adjusting the response screen to cue the retrieval of either personal experience (AM), general knowledge 
and factual information (SM), or questions about the content of the cue images (EM).

Acquisition: 3T Siemens scanner equipped with a 32-channel head coil. Structural: 176 slices sagittal; 1 mm isotropic 
volume; TR = 4000 ms; TE = 2.89 ms; FOV = 256 mm. Functional: T2*-weighted echo-planar image pulse sequence  
(45 slices, 2.5 mm slice thickness; voxel size = 2.5 × 2.5 × 2.5 mm, TR = 3000 ms; TE = 30 ms; FOV = 190 mm; flip  
angle = 90).

Number of subjects: 62 (32M); age: 10–35 years (see Notes).

Contrast evaluated: task > control

ROI: Inferior frontal gyrus (Neuroquery search term “IFG” thresholded Z > 3)

Notes: Data comprised three cohorts: children (10–12; n = 21), adolescents (14–16; n = 20), and young adults (20–35; 
n = 22) that were analyzed separately. There were insufficient data for test–retest evaluation. The tsv file for child-20 
contains a typo with “semantic” mislabeled as “semanti” and autobio.tsv is empty for child-13. These subjects were 
excluded.

Accession Number: ds002382

Publication: Rogers et al. (2020)

Task: Speech comprehension in noise

Task details: Subjects were presented auditory stimuli via MR-compatible headphones consisting of words (monosyl-
labic consonant–vowel–consonant), silence, and noise (single-channel noise vocoded words) in two sessions of passive 
listening and two sessions of word repetition in which participants were asked to repeat aloud the presented word. 
Responses in the repeat condition were recorded and scored as either correct or incorrect.

Acquisition: MRI data were acquired using a Siemens Prisma scanner (Siemens Medical Systems) at 3 T equipped with 
a 32-channel head coil. Scan sequences began with a T1-weighted structural volume using an MPRAGE sequence  
(TR = 2.4 s, TE = 2.2 ms, flip angle = 8, 300 × 320 matrix, voxel size = 0.8 mm isotropic). Functional images were ac-
quired using a multiband echo-planar imaging sequence (TR = 3.07 s, TA = 0.770 s, TE = 37 ms, flip angle = 37, voxel 
size = 2 × 2 × 2 mm, multiband factor = 8).

Number of subjects: Young adults: n = 29 (19 female); age: 19–30 years (mean = 23.8). Older adults: n = 32 (17 female); 
age 65–81 years (mean = 71.0).

Contrast evaluated: repeat word > noise

ROI: 5 mm spheres in bilateral motor cortex ([−56, −6, 26] and [62, 0, 28]). Coordinates taken from Pulvermüller et al. 
(2006)

Notes: Young adults and older adults were analyzed separately.



 : 2022, Volume 2 - 25 - CC By 4.0: © Jones et al.

O R I G I N A L   R E S E A R C H   A R T I C L E

REFERENCES

 1. Courtney AL, PeConga EK, Wagner DD, Rapuano KM. Calorie information 
and dieting status modulate reward and control activation during the eval-
uation of food images. PLoS One. 2018 Nov 2;13(11):e0204744.

 2. Diedrichsen J, Shadmehr R. Detecting and adjusting for artifacts in fMRI 
time series data. Neuroimage. 2005 Sep;27(3):624–34.

 3. Duncan KJ, Pattamadilok C, Knierim I, Devlin JT. Consistency and variabili-
ty in functional localisers. Neuroimage. 2009;46(4):1018–26.

 4. Fynes-Clinton S, Marstaller L, Burianová H. Differentiation of functional 
networks during long-term memory retrieval in children and adolescents. 
Neuroimage. 2019 May 1;191:93–103.

 5. Gorgolewski KJ, Storkey A, Bastin ME, Whittle IR, Wardlaw JM, Pernet CR. 
A test-retest functional MRI dataset for motor, language and spatial at-
tention functions [Internet]. GigaScience Database; 2013. Available from: 
http://gigadb.org/dataset/100051

 6. Hoffmann M, Carpenter TA, Williams GB, Sawiak SJ. A survey of patient 
motion in disorders of consciousness and optimization of its retrospective 
correction. Magn Reson Imaging. 2015 Apr;33(3):346–50.

 7. Huang J, Francis AP, Carr TH. Studying overt word reading and speech pro-
duction with event-related fMRI: a method for detecting, assessing, and 
correcting articulation-induced signal changes and for measuring onset 
time and duration of articulation. Brain Lang. 2008 Jan;104(1):10–23.

 8. Johnstone T, Ores Walsh KS, Greischar LL, Alexander AL, Fox AS, Davidson 
RJ, et al. Motion correction and the use of motion covariates in multi-
ple-subject fMRI analysis. Hum Brain Mapp. 2006 Oct;27(10):779–88.

 9. Kay KN, Rokem A, Winawer J, Dougherty RF, Wandell BA. GLMdenoise: 
a fast, automated technique for denoising task-based fMRI data. Front 
Neurosci. 2013 Dec 17;7:247.

 10. Kelly AMC, Uddin LQ, Biswal BB, Castellanos FX, Milham MP. Competition 
between functional brain networks mediates behavioral variability. 
Neuroimage. 2008 Jan 1;39(1):527–37.

 11. Kochiyama T, Morita T, Okada T, Yonekura Y, Matsumura M, Sadato N. 
Removing the effects of task-related motion using independent-compo-
nent analysis. Neuroimage. 2005 Apr 15;25(3):802–14.

 12. Lemmin T, Ganesh G, Gassert R, Burdet E, Kawato M, Haruno M. Model-
based attenuation of movement artifacts in fMRI. J Neurosci Methods. 
2010 Sep 30;192(1):58–69.

 13. Lewis-Peacock JA, Postle BR. Temporary activation of long-term memory 
supports working memory. J Neurosci. 2008 Aug 27;28(35):8765–71.

 14. Liao R, McKeown MJ, Krolik JL. Isolation and minimization of head mo-
tion-induced signal variations in fMRI data using independent component 
analysis. Magn Reson Med. 2006 Jun;55(6):1396–413.

 15. Mayer AR, Ling JM, Dodd AB, Shaff NA, Wertz CJ, Hanlon FM. A com-
parison of denoising pipelines in high temporal resolution task-based 
functional magnetic resonance imaging data. Hum Brain Mapp. 2019 
Sep;40(13):3843–59.

 16. Middlebrooks EH, Frost CJ, Tuna IS, Schmalfuss IM, Rahman M, Old Crow 
A. Reduction of motion artifacts and noise using independent component 
analysis in task-based functional MRI for preoperative planning in patients 
with brain tumor. AJNR Am J Neuroradiol. 2017 Feb;38(2):336–42.

 17. Oakes TR, Johnstone T, Ores Walsh KS, Greischar LL, Alexander AL, Fox AS, 
et al. Comparison of fMRI motion correction software tools. Neuroimage. 
2005 Nov 15;28(3):529–43.

 18. Pulvermüller F, Huss M, Kherif F, Moscoso del Prado Martin F, Hauk O, 
Shtyrov Y. Motor cortex maps articulatory features of speech sounds. Proc 
Natl Acad Sci U S A. 2006 May 16;103(20):7865–70.

 19. Richardson H, Lisandrelli G, Riobueno-Naylor A, Saxe R. Development of 
the social brain from age three to twelve years. Nat Commun. 2018 Mar 
12;9(1):1027.

 20. Rogers CS, Jones MS, McConkey S, Spehar B, Van Engen KJ, Sommers 
MS, et al. Age-related differences in auditory cortex activity during spoken 
word recognition. Neurobiol Lang. 2020 Oct;1(4):452–73.

 21. Siegel JS, Power JD, Dubis JW, Vogel AC, Church JA, Schlaggar BL, et al. 
Statistical improvements in functional magnetic resonance imaging anal-
yses produced by censoring high-motion data points. Hum Brain Mapp. 
2014;35:1981–96.

 22. Tierney TM, Weiss-Croft LJ, Centeno M, Shamshiri EA, Perani S, Baldeweg 
T, et al. FIACH: a biophysical model for automatic retrospective noise con-
trol in fMRI. Neuroimage. 2016 Jan 1;124(Pt A):1009–20.

 23. Tohka J, Foerde K, Aron AR, Tom SM, Toga AW, Poldrack RA. Automatic in-
dependent component labeling for artifact removal in fMRI. Neuroimage. 
2008 Feb 1;39(3):1227–45.

 24. Wilke M, Baldeweg T. A multidimensional artefact-reduction approach to 
increase robustness of first-level fMRI analyses: censoring vs. interpolating. 
J Neurosci Methods. 2019 Apr 15;318:56–68.

 25. Xu Y, Tong Y, Liu S, Chow HM, AbdulSabur NY, Mattay GS, et al. Denoising 
the speaking brain: toward a robust technique for correcting artifact- 
contaminated fMRI data under severe motion. Neuroimage. 2014 Dec; 
103:33–47.

 26. Zar JH. Biostatistical Analysis. 5th ed. Prentice-Hall/Pearson. 2010.

http://gigadb.org/dataset/100051

