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ABSTRACT

Being able to remove or weigh down the influence of outlier data is desirable for any statistical model. While magnetic and electro-
encephalographic (MEEG) data are often averaged across trials per condition, it is becoming common practice to use information 
from all trials to build statistical linear models. Individual trials can, however, have considerable weight and thus bias inferential 
results (effect sizes as well as thresholded t/F/p maps). Here, rather than looking for univariate outliers, defined independently at 
each measurement point, we apply the principal component projection (PCP) method at each channel, deriving a single weight 
per trial at each channel independently. Using both synthetic data and open electroencephalographic (EEG) data, we show (1) that 
PCP is efficient at detecting a large variety of outlying trials; (2) how PCP-based weights can be implemented in the context of the 
general linear model (GLM) with accurate control of type 1 family-wise error rate; and (3) that our PCP-based weighted least squares 
(WLS) approach increases the statistical power of group analyses as well as a much slower iterative reweighted least squares (IRLS) 
approach, although the weighting scheme is markedly different. Together, our results show that WLS based on PCP weights derived 
from whole trial profiles is an efficient method to weigh down the influence of outlier EEG data in linear models.
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channel × time × trials and channel × frequency × time ×  
trials. Several neuroimaging packages are dedicated to 
the statistical analyses of such large multidimensional data, 
often using linear methods. For instance, in the LIMO MEEG 
toolbox (2), each channel, frequency and time frame are an-
alysed independently using the general linear model, an 
approach referred to as mass-univariate analysis. Ordinary 
least squares (OLS) approaches are used to find model pa-
rameters that minimize the error between the model and 
the data. For least squares estimates to have good statistical 
properties, it is however expected that the error covariance 
off-diagonals are zeros, such that Cov(e) = σ 2l, l being the 
identity matrix (3), assuming observations are independent 
and identically distributed. It is well established that devia-
tions from that assumption lead to substantial power reduc-
tion and to an increase in the false-positive rate. When OLS 
assumptions are violated, robust techniques offer reliable 
solutions to restore power and control the false-positive  
rate. Weighted least squares (WLS) approach is one such 

INTRODUCTION

Magnetic and electroencephalographic (MEEG) data 
analysis can be subdivided into two main parts: prepro-
cessing and processing. Data preprocessing corresponds 
to any manipulation and transformation of the data, such 
as artefacts removal and attenuation or change in data 
representations (spectral transformation, source model-
ling). Data processing refers to mathematical procedures 
that do not change the data, i.e. statistical analysis and 
statistical modelling (1). Here, we present a method that 
improves data processing by weighting down trials that 
have different dynamics from the bulk of the data, within 
the context of an experimental design. We investigated 
single-trial weighting for full scalp/channel statistical lin-
ear hierarchical modelling, providing a more robust sta-
tistical analysis method to the community.

After data preprocessing, MEEG data are typically ep-
oched to form three- or four-dimensional matrices of e.g. 
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robust method that uses different weights across trials, such 
that Cov(e) = σ 2 V, with V a diagonal matrix:

y = Xβ + e, E (e) = 0, Cov(e) = σ2V� (1)

with y an n-dimensional vector (number of trials), X the 
n*p design matrix, β a p-dimensional vector (number of 
predictors in X) and e the error vector of dimension n. 
The WLS estimators can then be obtained using an OLS 
on transformed data (equations 2 and 3): 

Wy = WX β + We, E(e) = 0, Cov(e) = σ2I� (2)

β = (XTWX)−1XTWy� (3)

with W a 1*n vector of weights.
When applied to MEEG data, a standard mass-univariate  

WLS entails obtaining a weight for each trial but also 
each dimension analysed, i.e. channels, frequencies and 
time frames. Following such procedure, a trial could be 
considered as an outlier or be assigned a low weight, 
for a single frequency or time frame, which is implausi-
ble given the well-known correlations of MEEG data over 
space, frequencies and time. We propose here that a 
single or a few consecutive data points should never be 
flagged as outliers or weighted down, and that a single 
weight per trial (and channel) should be derived instead, 
with weights taking into account the whole temporal or 
spectral profile. In the following, we demonstrate how 
the principal component projection (PCP) method (4) can 
be used in this context, and how those weights can then 
be used in the context of the general linear model (WLS), 
applied here to event-related potentials. Such weight-
ing should not be taken to bypass data preprocessing. 
Because measurement artefacts and physiological arte-
facts are typically several orders of magnitude stronger 
than the signal of interest, and often span consecutive 
trials, they require dedicated algorithms. After data 
preprocessing, residual signal artefacts might however 
remain. In addition, natural and unintended experimen-
tal variations might also exist among all trials, and the 
weighting scheme aims to account for these. 

METHOD

Trial-based weighted least squares

The new WLS solution consists of computing first-level 
general linear model (GLM) beta estimates using weights 
from the PCP algorithm (4). As such, the estimation proce-
dure follows the usual steps of weighting schemes, like a 
standard iterative reweighted least squares (IRLS) solution:

1.  After the OLS solution is computed, an adjust-
ment is performed on residuals by multiplying them 
by −h1/ 1 where h is a vector of leverage points  
(i.e. the diagonal of the hat matrix H = X(X, X)−1 X where 
X is the design matrix reflecting experimental condi-
tions). This adjustment is necessary because leverage 

points are the most influential on the regression space, 
i.e. they tend to have low residual values (5).

2.  Residuals are then standardized using a robust esti-
mator of dispersion, the median absolute deviation 
(MAD) to the median, and re-adjusted by the tun-
ing function. Here, we used the bisquare function. A 
series of weights is next obtained either based on 
distances (PCP method) or minimizing the error term 
(IRLS) with, in both cases, high weights for data points 
having high residuals (with a correction for leverage). 

3.  The solution is then computed following equation 3.

Unlike IRLS, WLS weights are not derived for each 
time frames independently but by looking at the multi-
variate distances in the principal component space (step 
2 above) and thus deriving a unique weight for all time 
frames. An illustration of the method is shown in figure 1.  
Trial weights are computed as a distance among trials pro-
jected onto the main (≥99%) principal components space. 
Here, the principal components computed over the f time 
frames are those directions that maximize the variance 
across trials for uncorrelated (orthogonal) time periods (fig-
ure 1B). Outlier trials are points in the f-dimensional space 
that are far away from the bulk. By virtue of the principal 
component analysis (PCA), these outlier trials become 
more visible along the principal component axes than in 
the original data space. Weights (figure 1E) for each trial 
are obtained using both the Euclidean norm (figure 1C, dis-
tance location) and the kurtosis weighted Euclidean norm 
(figure 1D, distance scatter) in this reduced PCA space (see 
Ref. (4) for details). Weights are then applied to each trial 
(at each data points) on the original data (i.e. there is no 
data reduction). We exploit this simple technique because 
it is computationally fast given the rich dimensional space 
of EEG data and because it does not assume the data to 
originate from a particular distribution. The PCP algorithm 
is implemented in the limo_pcout.m function and the WLS 
solution in the limo_WLS.m function, both distributed 
with the LIMO MEEG toolbox (https://limo-eeg-toolbox.
github.io/limo_meeg/).

Simulation-based analyses

A. Outlier detection and effectiveness of the weighting 
scheme
Simulated event-related potentials (ERPs) were generated 
to evaluate the classification accuracy of the PCP meth-
od and to estimate the robustness-to-outliers and signal-
to-noise ratio (SNR) of the WLS solution in comparison 
to an OLS solution and a standard IRLS solution, which 
minimizes residuals at each time frame separately (imple-
mented in limo_IRLS.m). To do so, we manipulated the 
following: (1) the percentage of outliers, using 10%, 20%, 
30%, 40% or 50% of outliers; (2) the SNR (defined relative 
to the mean over time of the background activity); and (3) 
the type of outliers. The first set of outliers were defined 

https://limo-eeg-toolbox.github.io/limo_meeg/
https://limo-eeg-toolbox.github.io/limo_meeg/
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and the truth while KS distances provide a fuller picture 
of the overall differences in distributions. 

The code used to generate the ERP and the results 
are available at https://github.com/LIMO-EEG-Toolbox/
limo_test_stats/tree/master/PCP_simulations/.

MCC
TP TN FP FN

TP FP TP FN TN FP TN FN( )( )( )( )
=

∗ − ∗

+ + + +

� (4)

with TP the true positives, TN the true negatives, FP the 
false positives and FN the false negatives.

B. Statistical inference
Accurate estimation of model parameters (i.e. beta esti-
mates in the GLM – equation 3) is particularly important 
because it impacts group-level results. Inference at the 
single-subject level may, however, also be performed 
and accurate p-values need to be derived. Here, error 
degrees of freedom are obtained using the Satterthwaite 
approximation ((8) equation 5). 

dfe = tr ([I − H]T[I − H])� (5)

with dfe, the degrees of freedom of the error, the identity 
matrix, and the hat matrix.

based on the added noise: white noise, pink noise, alpha 
oscillations and gamma oscillations following (6). In these 
cases, the noise started with a P1 component and lasted 
~200 ms (see below). The second set of outliers were de-
fined based on their amplitude or outlier-to-signal ratio 
(0.5, 0.8, 1.2 and 1.5 times the true N1 amplitude). 

Synthetic data were generated for one channel, using 
the model developed by Yeung et al. (2018 — (7)). The 
simulated signal corresponded to an event-related po-
tential with P1 and N1 components (100 ms long) added 
to background activity with the same power spectrum 
as human EEG, generating 200 trials of 500 ms dura-
tion with a 250-Hz sampling rate. Examples for each 
type of simulation are shown in figure 2 and results are 
based, for each case, on a thousand random repeti-
tions. Performance of the PCP algorithm at detecting 
outlying synthetic EEG trials was investigated by com-
puting the confusion matrix and mapping the true- and 
false-positive rates in the receiver operating space, 
and by computing the Matthew correlation coefficients 
(MCCs – equation 4). The robustness, or effectiveness 
of the weighting scheme, was examined by computing 
the Pearson correlations and the Kolmogorov–Smirnov 
(KS) distances between the ground truth mean and the 
OLS, WLS and IRLS means. Pearson values allowed to es-
timate the linear relationships between estimated means 

Fig. 1.  Illustration of the PCP weighting scheme using trials for ‘famous faces’ of the OpenNeuro.org publicly available ds002718 dataset. Data are from subject 3, chan-
nel 34 (see section on empirical data analysis). Panel A shows the single-trial responses to all stimuli. The principal component analysis is computed over time, keeping 
the components explaining the most variance and summing to at least 99% of explained variance (giving here 69 eigenvectors, i.e. independent time components from 
the initial 176 time points). The data are then projected onto those axes (panel B). From the data projected onto the components, Euclidean distances for location and 
scatter are computed (panels C and D – showing smooth histograms of weights) and combined to obtain a distance for each trial. That distance is either used as weights 
in a linear model or used to determine outliers (panel E, with outliers identified for weights below ~0.27, shown in dark grey). At the bottom right, the mean ERP for 
trials classified as good (red) vs. outliers (black) and the weighted mean (green) are shown (panels F and G). Shaded areas indicate the 95% highest-density percentile 
bootstrap intervals.

https://github.com/LIMO-EEG-Toolbox/limo_test_stats/tree/master/PCP_simulations/
https://github.com/LIMO-EEG-Toolbox/limo_test_stats/tree/master/PCP_simulations/
OpenNeuro.org


 : 2022, Volume 2	 - 4 -� CC By 4.0: © Pernet et al.

O R I G I N A L   R E S E A R C H   A R T I C L E

classification; (2) validate the GLM implementation for 
type 1 error family-wise control at the subject level; (3) 
evaluate group results, contrasting WLS against the 
OLS and IRLS methods. This analysis can be reproduced 
using the script available at https://github.com/LIMO-
EEG-Toolbox/limo_meeg/blob/master/resources/code/
Method_validation.m.

A. EEG data and preprocessing
The experiment consisted in the presentation of familiar, 
unfamiliar and scrambled faces, repeated twice at vari-
ous intervals, leading to a factorial 3 (type of faces) by 3 
(repetition) design. The preprocessing reused the pipe-
line described in Pernet et al. (2021) (10). EEG data were 
extracted from the MEG fif files, time corrected and elec-
trode position re-oriented and saved according to EEG-
BIDS (11) (available at OpenNeuro 10.18112/openneuro.
ds002718.v1.0.2.). Data were imported into EEGLAB (12) 
using the bids-matlab-tools v5.2 plug-in, and non-EEG 

To validate p-values, simulations under the null were 
performed. Two types of data were generated: Gaussian 
data of size 120 trials × 100 time frames and EEG data 
of size 120 trials × 100 time frames with a P1 and N1 
component as above, added to coloured background 
activity with the same power spectrum as human EEG. In 
each case, a regression (1 Gaussian random variable), an 
ANOVA (3 conditions of 40 trials — dummy coding) and 
an ANCOVA (3 conditions of 40 trials and 1 Gaussian ran-
dom covariate) model were fitted to the data using the 
OLS, WLS and IRLS methods. The procedure was per-
formed 10,000 times, leading to 1 million p-values per 
data/model/method combination and Type 1 errors with 
binomial confidence intervals were computed.

Empirical data analysis

A second set of analyses used the publicly available 
multimodal face dataset (9) to (1) investigate the PCP 

Fig. 2.  Illustration of simulated ERP ground truth with the different types of outlier trials. At the top is shown the mean background, mean signal and resulting generated 
ERP with its 95% confidence intervals. In each subsequent subplot is shown the mean ERP ground truth from 160 trials with their 95% confidence intervals (blue) with an 
SNR of 1. The first row shows in red the mean ERP from outlier trials generated by adding white noise, pink noise, alpha or gamma oscillations; the second row shows 
the mean ERP from outlier trials generated with variable outlier-to-signal ratio (OSR) on the N1 component. 

https://github.com/LIMO-EEG-Toolbox/limo_meeg/blob/master/resources/code/Method_validation.m
https://github.com/LIMO-EEG-Toolbox/limo_meeg/blob/master/resources/code/Method_validation.m
https://github.com/LIMO-EEG-Toolbox/limo_meeg/blob/master/resources/code/Method_validation.m
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determine the convergence rate, i.e. the number of re-
samples needed to control the FWER. Since OLS was 
already validated in Pernet et al. (2015), here we only 
present WLS results. Statistical validations presented 
here and other statistical tests implemented in the LIMO 
MEG toolbox v3.0 (GLM validation, robust tests, etc.) are 
all available at https://github.com/LIMO-EEG-Toolbox/
limo_test_stats/wiki.

D. Performance evaluation at the group level
At the group level (second level), we computed 3 × 3 
repeated measures ANOVAs (Hotelling’s T^2 tests) sep-
arately on OLS, WLS and IRLS estimates, with the type 
of faces and repetition as factors. Results are reported 
using both a correction for multiple comparisons with 
cluster-mass and with threshold-free cluster enhance-
ment (TFCE) at p < .05 (16,17). 

In addition to these thresholded maps, distributions 
were compared to further understand where differenc-
es originated from. First, we compared raw effect sizes 
(Hotelling’s T^2) median differences between WLS vs. 
OLS and WLS vs. IRLS for each effect (face, repetition 
and interaction), using a percentile t-test with alpha ad-
justed across all six tests using Hochberg’s step-up pro-
cedure (18). This allowed checking if differences in results 
were due to effect size differences. Then, since multiple 
comparison correction methods are driven by the data 
structure, we compared the shapes of the F-value and of 
the TFCE-value distributions (TFCE reflecting clustering). 
Each distribution was standardized (equation 6), and 
WLS vs. OLS and WLS vs. IRLS distributions were com-
pared at multiple quantiles (19).

�( )
( ) ( )

=
−

π
y

y y

MAD y
zi

i

2

� (6)

with yzi the standardized data, y the data, ỹ the median 
and MAD the median absolute deviation. 

RESULTS

Outlier detection

The PCP method is used in the GLM to obtain weights 
and not to remove outliers directly. Investigating outli-
er detection performance allowed however to examine 
what kind of trials are weighted down and how good 
the method is at detecting such trials. Figure 3 shows all 
the results for ERP simulated with an SNR of 1. Similar 
results were observed when using an SNR of 2 (supple-
mentary figure 1). First and foremost, in all cases and for 
up to 40% of outlying trials, classified trials are located 
in the upper left corner of the receiver-operating char-
acteristic (ROC) space, indicating good performances. 
When reaching 50% of outliers, the true-positive rate 
falls down to ~40% and the false-positive rate remains 
below 40%. This is best appreciated by looking at the 

channel types were removed. Bad channels were next 
automatically removed and data filtered at 0.5 Hz using 
pop_clean_rawdata.m of the clean_radata plugin v2.2 
(transition band [0.25 0.75], bad channel defined as a flat 
line of at least 5 sec and with a correlation to their ro-
bust estimate based on other channels below 0.8). Data 
were then re-referenced to the average (pop_reref.m) 
and submitted to an independent component analysis 
(13) (pop_runica.m using the runnica algorithm spher-
ing data by the number of channels -1). Each compo-
nent was automatically labelled using the ICLabel v1.2.6 
plug-in (14), rejecting components labelled as eye move-
ments and muscle activity above 80% probability. Epochs 
were further cleaned if their power deviated too much 
from the rest of the data using the Artifact Subspace 
Reconstruction algorithm (15) (pop_clean_rawdata.m, 
burst criterion set to 20).

B. High vs. low weight trials and parameters estimation
At the subject level (first level), ERPs were modelled at 
each channel and time frame with the nine conditions 
(type of faces × repetition) and beta parameter esti-
mates obtained using OLS, WLS and IRLS. For each sub-
ject, high vs. low weight trials were compared with each 
other at the channel showing the highest between tri-
als variance to investigate what ERP features drove the 
weighting schemes. High and low trials were defined a 
priori as trials with weights (or mean weights for IRLS) 
below the first decile or above the ninth decile. We used 
a two-sample bootstrap-t method to compare the 20% 
trimmed means of high and low trials in every partici-
pant, for each of these three quantities: temporal SNR 
(the standard deviation over time); global power (mean 
of squared absolute values, Parseval’s theorem); auto-
correlation (distance between the two first peaks of the 
power spectrum density, Wiener–Khinchin theorem). A 
similar analysis was conducted at the group level averag-
ing the metrics across trials. Computations of the three 
quantities have been automatized for LIMO MEEG v3.0 
in the limo_trialmetric.m function.

C. Statistical inference
In mass-univariate analyses, once p-values are obtained, 
the family-wise type 1 error rate can be controlled using 
the distribution of maxima statistics from data generat-
ed under the null hypothesis (16). Here, null distributions 
were obtained by first centring data per conditions, i.e. 
the mean is subtracted from the trials in each condition, 
such that these distributions had a mean of zero, but the 
shape of the distributions is unaffected. We then boot-
strap these centred distributions (by sampling with the 
replacement), keeping constant the weights (since they 
are variance stabilizers) and the design. We comput-
ed 2,500 bootstrap estimates per subject. A thousand 
of these bootstrap estimates were used to compute 
the family-wise type 1 error rate (FWER), while maxima 
and cluster maxima distributions were estimated using 
300 to 1,500 bootstraps estimates in steps of 300, to 

https://github.com/LIMO-EEG-Toolbox/limo_test_stats/wiki
https://github.com/LIMO-EEG-Toolbox/limo_test_stats/wiki
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increases. This implies that the PCP method did not de-
tect amplitude changes around peaks. These results are 
simply explained by the principal components being 
computed over time frames, and outliers with pink noise 
and weaker or stronger N1 do not affect the temporal 
profile of the ground truth sufficiently to lead to differ-
ent eigenvectors (‘directions’) in this dimension when 
decomposing the covariance matrix, i.e. their temporal 
profiles do not differ from the ground truth.

plots showing perfect control over false positives when 
data are contaminated with up to 40% of white, alpha, 
and gamma outliers. In those cases, the MCCs also re-
main high (>0.6) although not perfect (not =1), indicat-
ing some false negatives. Compared with other types 
of noise, pink noise elicited very different results, with 
MCCs around 0 indicating chance classification level. 
Results from amplitude outliers also show MCCs close 
to 0 with a linear decrease in true positives and a linear 
increase in false positives as the percentage of outliers 

Fig 3.  PCP performance at detecting outlying trials with an SNR of 1. (A) Results for outliers affected by white noise, pink noise, alpha and gamma oscillations. (B) 
Results for trials affected by amplitude changes over the N1 component (0.5, 0.8, 1.2, 1.5 times the N1). The scatter plots map the receiver operating characteristic space 
(false-positive rate vs. true-positive rate); the curves display, from left to right, the median true-positive rate, false-positive rate and Matthew correlation coefficients.
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autocorrelation 11 vs. 12.25 ms), despite having similar 
spectra (as expected from data filtering and artefact re-
duction). This is an important result because weights are 
determined from the multivariate Euclidian distance and 
skewness of OLS residuals in the principal component 
space, which are independent of those metrics but nev-
ertheless capture those temporal variations.

By comparison, trials with low and high mean weights 
based on IRLS, did not differ on those metrics (temporal 

High vs. low trial weights

The classification for real ERP data confirmed the simula-
tion results: the PCP algorithm weighted down trials with 
dynamics different from the bulk. Single-subject analy-
ses (supplementary table 1) and group analyses (figure 4)  
for WLS showed that trials with a low weight are less 
smooth than trials with a high weight (higher temporal 
variance ~10 vs. 7.26 μV and power ~131 vs. 69 dB, lower 

Fig. 4.  Face ERPs computed for low- and high-weight trials derived from the weighted least squares (WLS) and iterative reweighted least squares (IRLS) approaches. 
The top of the figure displays the mean of low-weight (red) and high-weight (black) trials over right posterior temporal (subject 2, channel 50), left frontal (subject 14, 
channel 4), and left posterior central (subject 19, channel 66) areas showing that in both cases, low and high trials have different dynamics, but also that WLS and IRLS 
have different weighting resulting in different low and high weight ERPs. The lower part of the figure displays single-subject mean tSNR, power and autocorrelation 
(scatter plots) along with the percentile bootstrap difference between low- and high-weight trials (black circles are the bootstrap 20% trimmed mean differences and the 
pink rectangles show the 20% trimmed mean and 95% confidence intervals) revealing that statistical outliers identified by the PCP algorithm (i.e. OLS residual trials with 
a large distance in the multivariate space) differ in their tSNR, power and autocorrelation, while this is not the case of IRSL outliers.
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Effectiveness of the weighting scheme

The effect of adding outliers on the mean can be seen in 
figure 5 and supplementary figure 2 in which contaminat-
ed data are compared to the ground truth. The standard 
mean, i.e. the ordinary least squares ERPs, shows an almost 
linear decrease in Pearson correlations and linear increase 
in KS distances to the ground truth as the percentage of 
outlier increases, an expected behaviour since OLS are 
not robust. Our reference robust approach, IRLS, shows 
robustness to white noise, alpha and gamma oscillations 

variance ~9 vs. 7 μV, and power ~126 vs. 65 dB, autocor-
relation 12.25 vs. 12 ms), which is expected since IRLS 
weights are computed independently at each time 
frames. While 11 out of 18 subjects show maximum be-
tween-trial variance on the same channels for WLS and 
IRLS, only 28% of low weight trials were the same be-
tween the two methods, and 56% of high weight trials. 
Since different trials have low or even high weights be-
tween methods, this further indicates that the weighting 
scheme from WLS captures well trial dynamics, differing 
from IRLS that relies on amplitude variations only.

Fig. 5.  Robustness of the PCP method to outlying trials with an SNR of 1. The upper part of the figure shows median and 95% CI results for outliers affected by white 
noise, pink noise, alpha and gamma oscillations. The lower part of the figure shows results for trials affected by amplitude changes over the N1 component (0.5, 0.8, 
1.2, 1.5 times the N1). Mean Pearson correlations indicate how similar the reconstructed means are to the ground truth (averaged over time), with WLS (in red) largely 
outperforming OLS (in blue) and IRLS (in green) for white, alpha and gamma noise and higher level of outlying trials, while being less performant for pink noise and N1 
amplitude outliers. The mean Kolmogorov–Smirnov distances indicate how much the overall distribution of values differs from the ground truth, showing that WLS ERPs 
are overall more distant to the (outlier biased) OLS while IRLS still follows the OLS closely.
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confidence intervals overlapping with the expected 
nominal value (figure 6). Individual mean values ranged 
from 0.039 to 0.070 for maximum statistics (across sub-
ject average 0.052) and 0.044 to 0.07 for spatial-temporal 
clustering (across subject average 0.051). Those results 
do not differ significantly from OLS results (paired boot-
strap t-test). Additional analyses based on the number 
of bootstraps used to build the null distribution indicate 
that 800 to 1,000 bootstrap samples are enough to ob-
tain stable results and that the errors are relatively well 
distributed in space and time even if some channels tend 
to be more affected than others, i.e. there is no strong 
sampling bias: maximum number of errors occurring at 
the same location was 0.05% using maximum statistics 
and 0.9% using spatial-temporal clustering, see figure 6, 
error density maps.

To summarize, simulations with synthetic data and 
nullified real-world ERP show that using a Satterthwaite 
approximation of the degrees of freedom of the error in 
the context of a WLS solution to the GLM with a single 
weight per trial controls well the type 1 error rate. 

Performance evaluation at the group level

Repeated measures ANOVAs using parameter esti-
mates from each method revealed two spatial-temporal 
clusters for the face effect for both WLS and IRLS, but 
only the first cluster was declared statistically significant 
using OLS (table 2). The expected results (9) with full 
faces having stronger N170 responses than scrambled 
faces are replicated for all approaches (start of cluster 
1). Maximum differences were observed over the N170 
only when using OLS parameters. Using WLS and IRLS 
gave maxima much later (P280), a result also observed 
when using TFCE rather than spatial-temporal cluster-
ing. In each case, a repetition effect was also observed 
in a much more consistent way among methods with the 
second presentation of stimuli differing from the first and 
third presentations (figure 7). 

The statistical maps show that group results based 
on WLS parameter estimates lead to smaller F-values 
than those obtained from OLS or IRLS estimates 
(note the difference in maxima table 1 and scale in 
figure 7), which is confirmed by the median differ-
ences in Hotelling’s T^2 values (table 3). As expected 
from a statistical method, the overall shape of ERPs 
and topographies are unchanged – only effect sizes 
and significance are affected (supplementary tables 
2 and 3).

Considering uncorrected p-values, this shift in 
F-values translates into weaker statistical power 
for WLS: face effect – OLS = 34% of significant data 
frames, WLS = 31% and IRLS = 34%; repetition effect 
– OLS = 39%, WLS = 35% and IRLS = 39%. By contrast, 
results based on cluster-corrected p-values showed 
however more statistical power for WLS relative to OLS 

with higher Pearson correlations than the OLS. Yet it per-
formed worse than the OLS with pink noise and amplitude 
outliers, showing lower correlations with the ground truth, 
despite having similar KS distances in all cases. As the IRLS 
solution weights data to minimize residuals at each time 
point separately, these are also expected results, giving an 
average distance (over time) larger than OLS. 

The new WLS approach showed stronger resistance 
to outliers than OLS and IRLS for white noise, alpha and 
gamma oscillations, with higher Pearson correlations. For 
pink noise and N1 amplitude outliers, it performs as well 
as the IRLS, despite different KS distances (slightly lower 
correlations with the ground truth for SNR of 1 and slightly 
higher correlation for SNR of 2). The IRLS algorithm atten-
uates the influence of those data points that differ from 
the ground truth, but this may be from different trials at 
different time points. By doing so, KS distances to the 
ground truth were similar or lower (for alpha and gamma 
oscillations) than the OLS. The WLS approach attenuates 
the influence of trials with different time courses and thus, 
the WLS ERP mean is affected at every time point, even 
if the detection concerns a small part of the time course, 
leading to higher KS distances even with a small number 
of outliers. 

To summarize, simulations showed that the PCP al-
gorithm detects well trials with different dynamics from 
the bulk leading to WLS-ERP that are, in general, more 
similar to the ground truth than ERP derived from OLS 
or IRLS (higher Pearson correlations). Additional results 
from real-world data indicate that trials with low PCP-
WLS weights are trials with different temporal profiles, 
concurring with the higher Kolmogorov–Smirnov dis-
tances observed in the simulation.

Statistical inference for single subjects

The average type 1 error rate for every channel and time 
frame tested with simulated data is at the nominal level 
(5%) for OLS. Results also show that IRLS approaches are 
a little lenient, with small but significantly smaller p-values  
than expected, leading to an error rate of ~0.055. 
Conversely, WLS approaches are conservative for simu-
lated ERP, with p-values slightly too high, giving a type 1 
error rate of ~0.04) and lenient with purely Gaussian data 
(type 1 error ~0.065 – table 1). This behaviour of WLS is 
caused by the PCP method that optimizes weights based 
on distances across time, except that with simulated 
Gaussian data there is no autocorrelation and the PCA 
returns a much higher number of dimensions, leading to 
a meaningless feature reduction and thus meaningless 
trial distances and weights.

The WLS family-wise type 1 error rate (i.e. controlling 
the error for statistical testing across the whole data 
space) examined using nullified ERP data from Wakeman 
and Henson (2015) shows a good probability cover-
age for both maximum and cluster statistics with 95% 
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Table 1.  Type I error rate binomial 95% confidence intervals at every time frames and channels for simulated data under the null hypothesis.

Null Gaussian Null ERP

Regression OLS [0.0495 0.0503] [0.0498 0.0507]

WLS [0.0636 0.0645] [0.0400 0.0408]

IRLS [0.0555 0.0564] [0.0527 0.0536]

ANOVA OLS [0.0493 0.0502] [0.0493 0.0501]

WLS [0.0695 0.0706] [0.0374 0.0382]

IRLS [0.0575 0.0584] [0.0540 0.0549]

ANCOVA condition OLS [0.0494 0.0502] [0.0493 0.0502]

WLS [0.0699 0.0709] [0.0379 0.0386]

IRLS [0.0578 0.0587] [0.0546 0.0555]

ANCOVA covariate OLS [0.0496 0.0505] [0.0496 0.0504]

WLS [0.0638 0.0648] [0.0410 0.0418]

IRLS [0.0563 0.0572] [0.0538 0.0547]

Fig. 6.  Type 1 error rates under the null using the PCP-WLS method. The top row shows the subjects’ error rates: cell-wise, i.e. averaged across all time frames and  
channels, and corrected for the whole data space, i.e. type 1 family-wise error rate using either the distribution of maxima or the distribution of the biggest cluster 
masses. Results are within the expected range (marked by dotted black lines) with overlapping 95% confidence intervals for maximum statistics and spatial-temporal 
clustering. The middle row shows the effect of the number of resamples, with the dashed lines representing the boundaries of the individual 95% average confidence 
intervals, and the black lines the average. The cell-wise error is not affected by the number of bootstrap samples since it does not depend directly on this parameter to 
estimate the null (left). Using maximum statistics and cluster-mass distribution estimates shows a stronger dependency on the number of bootstrap estimates, with results 
stable after 800 to 1,000 bootstraps. The bottom row shows error density maps (sum of errors out of 27,000 null maps). The cell-wise error (i.e. no correction for multiple 
comparisons) shows that errors accumulate, with some channels showing many consecutive time frames with 5% error. By contrast, maximum statistics (middle) and the 
maximum cluster-masses (right) do not show this effect (maxima at 0.05% and 0.9%), suggesting little to no spatial bias in sampling (note the very different density scales 
for the three measures). 
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for the face effect (OLS 20%, WLS 22% and IRLS 25% 
of significant data frames with cluster mass and 3%, 
5% and 3% of significant data frames with TFCE), and 
mixed results for the repetition effect (OLS 31%, WLS 
28% and IRLS 31% of significant data frames with clus-
ter mass and 7%, 8% and 7% of significant data frames 
with TFCE). The comparison of distributions’ shapes 
by deciles (figure 8) provides some understanding of 
this phenomenon. For the face effect, WLS normalized 

F-values tended to be higher but did not differ sig-
nificantly from OLS or from IRLS, while TFCE-values 
were significantly larger, from the second decile on-
ward when compared to OLS, and for deciles 2, 3, 4, 
7, 8 and 9 compared to IRLS. For the repetition effect, 
WLS normalized F-values were also higher and differed 
from OLS on deciles 2, 7, 8 and 9 for both F-values 
and TFCE-values while it differed from IRLS on decile 9 
only when looking at F-values, and deciles 2, 5, 8 and 

Fig 7.  Main face effects observed using OLS, WLS or IRLS first-level derived parameters. The left column shows the full channels × times thresholded maps using 
cluster-mass correction for multiple comparisons (p < .05). Topographies are plotted at three local maxima. WLS and IRLS maps show late effects absent with the OLS 
solution. The middle and right columns show time courses of the mean parameter estimates per condition (blue, red and orange) and condition differences (green, 
purple and black) over channel 50 (right inferior-temporal) and channel 6 (middle anterior frontal). 
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Table 2.  Face and repetition effects results using cluster-mass correction and TFCE for each of the three methods. 

OLS WLS IRLS

Face Effect

Cluster 1
140 ms to 504 ms, max = 74, p = 0.002  
at 184 ms channel EEG049

140 ms to 424 ms, max = 64, p = 0.002  
at 280 ms channel EEG017 

136 ms to 432 ms, max = 74, p = 0.002  
at 292 ms channel EEG006 

Cluster 2  
440 ms to 648 ms, 
max = 17.6, p = 0.032 at 616 ms  
channel EEG057

520 ms to 648 ms, max = 22, p = 0.032  
at 636 ms channel EEG055 

TFCE
max = 74, p = 0.026
at 184 ms channel EEG049 

max = 64, p = 0.012 at 280 ms  
channel EEG017 

max = 74, p = 0.012 at 292 ms  
channel EEG006 

Repetition Effect

Cluster 1
232 ms to 648 ms, 
max = 50, p = 0.001 at 588 ms channel 
EEG057 

232 ms to 648 ms, max = 51, p = 0.001  
at 612 ms channel EEG045

236 ms to 648 ms, max = 52, p = 0.001  
at 588 ms channel EEG057 

TFCE
max = 50, p = 0.002
at 588 ms channel EEG057 

max = 51, p = 0.001 at 612 ms  
channel EEG045

max = 52, p = 0.001 at 588 ms  
channel EEG057 

Table 3.  Median differences in Hotelling’s T^2 values for each effect tested with percentile bootstrap 95% confidence intervals (p = 0.001).

Face Effect Repetition Effect Interaction Effect

WLS vs. OLS −0.32 [−0.36 −0.28] −0.54 [−0.59 −0.48] −0.21 [−0.29 −0.13]

WLS vs. IRLS −0.34 [−0.39 −0.30] −0.53 [−0.58 −0.48] −0.14 [−0.21 −0.08]

Fig. 8.  Comparisons of the deciles of standardized F-value (first and second columns) and TFCE-value (third and fourth columns) distributions. Comparisons were done 
independently for the face effect, the repetition effect and their interaction.
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Because the proposed weighing technique relies on 
a PCA, it is typically requested to have more trials (ob-
servations) than data points (time, frequency, or time 
per frequency), ensuring a full rank covariance matrix. 
From a design perspective, this is a desirable feature. 
For a ‘standard’ ERP up to 1-s long, down sampled at 
250 Hz, that means 251 trials in total after artefact rejec-
tion (about 70 trials per condition for 2 × 2 factorial de-
sign). One might argue that it is more than usually used, 
but there is evidence that many more trials than usual 
are needed for properly powered studies (see (1) for a 
discussion and references therein). For power analyses, 
looking at high-frequency modulation and thus typically 
analysing at 500 Hz, this means again 250 data points 
and thus at least 251 trials, which is more problematic. 
One can turn to the algorithm to compensate for the lack 
of trials. One solution may be to use a decomposition for 
rank reduced data while another may be to down sample 
the data. Additional simulations varying the number of 
trials (1,500 to 126) and sampling rate (1,000 Hz, 500 Hz 
and 250 Hz) and using white noise outliers indicate that 
having more trials than time frames always gives better 
classification results (as expected) but also that down 
sampling gives better results than using ill-conditioned 
data (supplementary table 4). Down sampling, however, 
interacts with the number of outliers (a priori unknown 
with real data) such as low sampling rate and high outlier 
number (>40%) cases that have poor performances. In 
such conditions, computing the data decomposition with 
ill-conditioned data provides better results. As a practi-
cal solution, the default usage of the limo_pcout.m func-
tion is thus to down sample the data by 2 if there are not 
enough trials. If this still results in rank deficient data, the 
PCP algorithm computes weights on the original ill-con-
ditioned data. For spectral analysis in the high-frequency 
domain that will likely suffer from such data conditioning, 
this still provides a good (automated) solution. It might 
also be possible to derive better weights (and thus more 
robust results) by maximizing the multivariate spread of 
the data in removing more components (i.e. retaining 
less than 99% of the variance) using e.g. a data-driven 
criteria and/or using a more robust decomposition. This 
would however require extensive simulations beyond the 
scope of this paper that applied the PCP method (4) to 
create a new WLS scheme. 

Using the trial dynamics (temporal or spectral profile) 
to derive a single weight per trial makes sense, not just 
because the observed signal is autocorrelated, but also 
because it is biologically relevant. Let us consider first 
the signal plus noise model of ERP generation (20–22). 
In this conceptualization, ERPs are time-locked additive 
events running on top of background activity. An outlier 
time frame for a given trial may occur if (1) the evoked 
amplitude deviates from the bulk of evoked trials or (2) 
the background activity deviates from the rest of the 
background activity. In the former case, the additional 
signal may be conceived either as a single process (a 

9 when looking at TFCE-values. Finally, for the inter-
action effect, WLS did not differ from OLS or IRLS in 
terms of F-values but had significantly weaker TFCE-
values than OLS (deciles 1, 3, 6, 7, 8 and 9) and IRLS (all 
deciles but the fourth). 

To summarize, for the significant main face effect and 
main repetition effect, a general pattern of more right-
skewed distributions of F-values and TFCE-values for 
WLS than for OLS was observed leading to an increase of 
statistical power (significance) for cluster corrected anal-
yses, while preserving the topographies (figure 7) and 
overall ERP shapes (overlap of point estimates with 95% 
CI of the different methods – supplementary table 2). 

DISCUSSION

Simulation and data-driven results indicate that the pro-
posed WLS-PCP method is efficient at down weighting 
trials with dynamics differing from the bulk, leading to 
more accurate estimates. Results show that, for ERP, de-
riving weights based on the temporal profile provides a 
robust solution against white noise or uncontrolled oscilla-
tions. For biological (pink) noise and amplitude variations 
that do not alter the temporal profile, the PCP algorithm 
does not classify well outlier trials, leading to a decrease 
in detection performance compared with white, alpha or 
gamma noise. Rather than a defect, we see this as biologi-
cally relevant (see below). Importantly, even in those cases 
of failed detection, the overall correlations with the ground 
truth remained high (≥0.99). When analysing real data, dif-
ferences in amplitude variations were also captured by the 
PCP/WLS approach, with amplitude variations related to 
trials that were out of phase with the bulk of the data.

Group-level analyses of the face dataset replicated 
the main effect of face type (faces > scrambled) in a 
cluster from ~150 ms to ~350 ms but also revealed a 
late effect (>500 ms), observed when using WLS and 
IRLS parameter estimates but absent when using OLS 
parameter estimates. Despite more data frames de-
clared significant with WLS than OLS, effects sizes were 
smaller for WLS than for OLS and IRLS. The shape of the 
F distributions when using WLS parameter estimates 
were however more right skewed than when using OLS 
or IRLS, leading cluster corrections to declare more data 
points as significant. Indeed, under the null, very simi-
lar distributions of maxima are observed for the three 
methods leading to more power for the more skewed 
observed distributions. The interplay between first-level  
regularization, second-level effect size, and multiple 
comparison procedures depends on many parameters, 
and it is not entirely clear how statistical power is affect-
ed by their combination and requires deeper investi-
gation via simulations. Empirically, we can nevertheless 
conclude that group results were statistically more pow-
erful using robust approaches at the subject level than 
when using OLS.
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chain of neural events at a particular location) or a mix-
ture of processes (multiple, coordinated neural events). 
In both cases, the data generating process is thought 
to be evolving over time (auto-regressive) which speaks 
against flagging or weighting a strong deviation at a par-
ticular time frame only. It is likely that several consecutive 
time frames deviate from most other trials, even though 
only one time frame is deemed an outlier. In the case 
of a deviation in background activity, it would mean that 
for an extremely brief period, a large number of neurons 
synchronized for non-experimentally related reasons and 
for this trial only. Although we do not contend that such 
events cannot happen in general, this would mean that, 
in the context of ERP outlier detection, the background 
activity varies by an amount several folds bigger than the 
signal, which goes against theory and observations. Let 
us now consider the phase resetting model (23,24). In this 
model, ERPs are emerging from phase synchronization 
among trials, due to stimulus-induced phase-resetting of 
background activity. If a trial deviates from the rest of the 
trials, this implies that it is out of phase. In this scenario, 
deriving different weights for different time frames (i.e. 
IRLS solution) means that the time course is seen as an 
alternation of normal and outlying time frames, which 
has no meaningful physiological interpretation. Thus, 
irrespective of the data generating model, the WLS ap-
proach seems biologically more appropriate than the 
IRLS method.

In conclusion, we propose a fast and straightforward 
weighting scheme of single trials for statistical analyses. 
Results indicate that it captures and attenuates well ERP 
noise, leading to increased estimation precision and 
possibly increased statistical power at the group level.
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Supplementary Figure 1.  PCP performance at detecting outlying trials with an SNR of 2. (A) Results for outliers affected by white noise, pink noise, alpha and gamma 
oscillations. (B) Results for trials affected by amplitude changes over the N1 component (0.5, 0.8, 1.2, 1.5 times the N1). The scatter plots map the receiver operating 
characteristic space (false-positive rate vs. true-positive rate); the curves display, from left to right, the median true-positive rate, false-positive rate and Matthew correla-
tion coefficients.
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Supplementary Table 1.  Subjects 95% percentile bootstrap confidence intervals of 20% trimmed mean differences between high and low trials obtained using 
PCP-WLS or IRLS at channels with the highest between-trial variance. Intervals that do not include 0 (i.e. the difference between high vs. low trials is statistically 
significant) are shown on a grey background.

tSNR Difference (µV) Power Difference (dB) Autocorrelation Difference (ms)

WLS IRLS WLS IRLS WLS IRLS

s2 [−0.03 0.54] [0.26 1.14] [−2 6] [3 18] [−8.5 1.8] [5.09 16.4]

s3 [2.35 2.92] [−4.48 −2.34] [35 50] [−55 −22] [−3.9 3.5] [16.6 45.9]

s4 [0.14 069] [1.9 3.43] [1 13] [39 64] [−13 −6.7] [−12.8 3.2]

s5 [4.03 8.25] [10.7 13.57] [77 200] [297 382] [−13 −4.7] [−14.6 −4.9]

s6 [1.51 2.87] [−0.74 1.98] [24 48] [−6 33] [−4.8 −0.39] [−0.6 17.8]

s7 [1.16 5.1] [2.44 5.26] [38 141] [54 129] [−4 11.1] [−7.3 11.2]

s8 [7.49 8.21] [7.57 8.55] [154 173] [159 183] [−24 −19.8] [−20.2 −14.1]

s9 [2.97 7.96] [−4.55 0.44] [52 169] [−74 28] [−16 −7.1] [−1.5 7.1]

s10 [−0.61 0.9] [−3.47 2.27] [−11 11] [−107 102] [0.9 9.1] [−0.2 1.5]

s11 [−0.73 4.46] [4.57 7.27] [−11 168] [123 200] [−2.9 1.4] [0 7.8]

s12 [6.69 11.17] [−2.06 4.85] [149 250] [−98 93] [−31 −22] [−13.1 −2.7]

s13 [−5.06 0.1] [−6.8 2.91] [−222 2] [−285 142] [4.4 12] [−6.2 0.19]

s14 [4.81 7.63] [3.54 7.77] [174 270] [123 270] [−0.4 24] [−6.9 13.3]

s15 [1.69 3.91] [−0.97 2.06] [36 93] [−20 51] [−6.5 1.1] [1.8 10.5]

s16 [−6.85 8.4] [−2.13 13.82] [−164 300] [−65 444] [−8.3 8.7] [−16 14.1]

s17 [2.34 3.72] [2.31 4.09] [34 68] [45 83] [−29.4 −15.9] [−13.8 2.4]

s18 [0.54 1.28] [−0.64 1.86] [6 20] [−3 27] [−15.7 −2.43] [−28.8 11.4]

s19 [−0.39 0.71] [−0.40 0.57] [−8 16] [−9 17] [−6.9 −1.3] [−7.1 −1.5]
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Supplementary Figure 2.  Robustness of the PCP method to outlying trials with an SNR of 2. The upper part of the figure shows the median and 95% CI results for out
liers affected by white noise, pink noise, alpha and gamma oscillations. The lower part of the figure shows results for trials affected by amplitude changes over the N1 
component (0.5, 0.8, 1.2, 1.5 times the N1). Mean Pearson correlations indicate how similar the reconstructed means are to the ground truth (averaged over time), with 
WLS (in red) largely outperforming OLS (in blue) and IRLS (in green) for white, alpha and gamma noise and a higher level of outlying trials while being less performant 
for pink noise and N1 amplitude outliers than OLS only. The mean Kolmogorov–Smirnov distances indicate how much the overall distribution of values differs from the 
ground truth, showing that WLS ERPs are overall more distant to the (outlier biased) OLS while IRLS still follows the OLS closely.
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Supplementary Table 2.  Pairwise differences in mean parameter estimates (arbitrary unit) measured at channel 50 and 6 at the maximum of the famous faces responses. 

  OLS WLS IRLS

Cluster 1
Channel 50

Famous faces vs. scrambled
−4.93

[−12.2 2.32]
−4.52

[−11.39 2.34]
−5.82

[−12.76 1.11]

Unfamiliar faces vs. scrambled
−4.77

[−12.42 2.86]
−4.64

[−13.02 3.72]
−5.19

[−11.93 1.54]

Famous vs. unfamiliar faces
−0.15

[−3.13 2.81]
0.12

[−3.28 3.53]
−0.62

[−4.86 3.60]

Cluster 1
Channel 6

Famous faces vs. scrambled
2

[−5.25 9.25]
1.71

[−5.16 8.59]
1.68

[−6.05 9.41]

Unfamiliar famous faces vs. scrambled
3.21

[−5.80 12.22]
2.20

[−5.97 10.38]
2.95

[−6.08 11.99]

Famous vs. unfamiliar faces
−1.20

[−5.72 3.30]
−0.49

[−5.03 4.04]
−1.27

[−5.47 2.93]

Cluster 2
Channel 50

Famous faces vs. scrambled
−4

[−13.82 5.82]
−4.11

[−15.62 7.40]
−4.04

[−13.31 5.23]

Unfamiliar faces vs. scrambled
−2.16

[−9.20 4.87]
−2.17

[−9.83 5.48]
−2.32

[−8.96 4.31]

Famous vs. unfamiliar faces
−1.83

[−6.47 2.81]
−1.93

[−9.76 5.88]
−1.71

[−7.47 4.03]

Supplementary Table 3.  Medians and maxima of the Hotelling’s T^2, F-values, cluster-mass and TFCE scores for each effect of the ANOVA and methods used at 
the first level. 

medianT maxT medianF maxF medianCluster maxCluster medianTFCE maxTFCE

Face effect

OLS 4.44 157.64 2.09 74.19 72.57 22,591.41 130.41 40,992.1

WLS 3.98 136.27 1.87 64.13 64.29 19,453.52 85.72 35,828.8

IRLS 4.49 157.77 2.11 74.25 34.41 23,300.19 130.88 54,888.48

Repetition effect

OLS 5.38 107.03 2.53 50.37 35.25 39,116.91 244.38 82,143.67

WLS 4.46 109.14 2.1 51.36 33.76 33,979.02 129.89 76,244.1

IRLS 5.32 110.86 2.5 52.17 37.31 39,870.66 212.27 98,429.06

Interaction effect

OLS 5.45 126.31 1.12 26.01 23.79 387.94 27.64 483.46

WLS 5.17 78.15 1.06 16.09 21.14 317.38 25.69 470.1

IRLS 5.32 135.67 1.09 27.93 30.57 283.44 22.9 366.41
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Supplementary Table 4.  Additional simulations with white noise and SNR of 1 tested the PCP performance (here Matthew correlation coefficients) for different 
sampling rates and number of trials, in particular having 50% more trials than time frames (1.5 trial-to-frame ratio (TFR)), just 1 extra (>1 TFR) or just 1 less (<1 TFR) 
trial or having 50% less trials than time frames (0.5 TFR). 

Sampling Frequency % of Outliers 1.5 TFR >1 TFR <1 TFR 0.5 TFR

1,000 Hz

10% 0.4248 0.4274 0.4259 0.4379

20% 0.5609 0.566 0.5654 0.5815

30% 0.6465 0.6511 0.6509 0.6664

40% 0.7032 0.7079 0.7079 0.7172

50% 0.4238 0.3666 0.3664 0.1835

500 Hz

10% 0.4307 0.4379 0.4352 0.4555

20% 0.5706 0.5815 0.5804 0.6152

30% 0.6558 0.6664 0.6659 0.708

40% 0.7118 0.7172 0.7172 0.7374

50% 0.3049 0.1835 0.1832 0.0593

250 Hz

10% 0.4417 0.4555 0.4487 0.478

20% 0.5937 0.6152 0.6135 0.6671

30% 0.6777 0.708 0.7074 0.7806

40% 0.7232 0.7374 0.7375 0.2326

50% 0.0922 0.0593 0.0576 0.0207




