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Contrast-agnostic deep learning–based registration 
pipeline: Validation in spinal cord multimodal MRI data
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ABSTRACT

Medical image registration can be challenging, in that optimal solutions depend on the application domain (unimodal, multimodal, 
intra-subject and inter-subject), anatomical sites (e.g., brain, spinal cord (SC) and lungs), dimensionality of the data (2D, 3D and 4D), 
deformation constraints (rigid, affine and nonlinear) and computational time. Solutions that could accommodate a large variety of 
applications while producing satisfactory results are needed. SynthMorph was recently introduced as an unsupervised deep learn-
ing–based registration method. A particularly interesting feature is that training is performed on synthetic data so that registration 
becomes agnostic to image contrast and anatomy. However, SynthMorph is particularly sensitive to the initial closeness of the imag-
es. In this work, we extend the SynthMorph method by developing a cascaded pipeline of two models that can accommodate large 
and fine deformations, respectively. We also validate this pipeline for the registration of intra-subject multimodal and inter-subject 
uni/multimodal MRI data of the SC. This task is known to be particularly difficult due to the vicinity of multiple tissue types whose 
morphometrics can vary substantially across subjects and contrasts. Evaluation of the method was conducted on a publicly available 
dataset (spine-generic, 267 subjects) and was compared with a state-of-the-art benchmark: Spinal Cord Toolbox and Advanced 
Normalization Tools. Results demonstrate better registration accuracy compared with the benchmark and about 24–30 times faster 
on CPUs depending on the image size. This proposed pipeline provides an easy-to-use, accurate and fast solution for multimodal 
3D registration. The code and trained models are freely available at https://github.com/ivadomed/multimodal-registration.
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INTRODUCTION

Registering patient images taken at different times, with-
in and across sessions, is a critical step for automatizing 
the monitoring of disease evolution, for leveraging multi-
ple contrasts (e.g., T1w, T2w and FLAIR) and for perform-
ing atlas-based analysis. Traditionally, the registration 
process has been formulated as a pairwise optimization 
problem using a similarity metric, with the aim of align-
ing a moving/source image with a fixed/reference/target 
image. Many algorithms and methods have been devel-
oped in this sense with cost functions specific to the task. 
Some of the most popular registration methods and tool-
kits include the Advanced Normalization Tools (ANTs, (1)) 
and elastix (2). A traditional pairwise image registration 
workflow for iterative methods is shown in Figure 1.

The drawback of traditional methods is that they 
often require substantial computational time, up to tens 
of minutes to even hours on a CPU (3) for deformable 
registration of large 3D MRI data. The expensive optimi-
zation solved for each pair of test images in traditional 
methods can be replaced with a global optimization of 
the registration function during a learning stage using 
deep learning. Supervised deep-learning methods use 
ground truth deformations to evaluate registration per-
formance during the training process. To overcome the 
lack of annotated data, Cao et al. (4) proposed to use 
the deformation fields obtained by iterative registration 
methods as ground truths for the training dataset. On 
the other hand, Sokootie et al. (5) used artificially gener-
ated displacement vector fields to train their supervised 
registration model.

https://creativecommons.org/licenses/by/4.0/
https://github.com/ivadomed/multimodal-registration
mailto:jcohen@polymtl.ca
http://10.52294/f662441d-2678-4683-8a8c-6ad7be2c4b29
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Another possibility is to overcome ground truth de-
formations during the learning process by using un-
supervised deep-learning methods, which have been 
increasingly developed in recent years for registration 
(6). The difficulty with unsupervised learning lies in de-
fining an appropriate loss function without using ground 
truth deformations. With the development of the spatial 
transformer network (7), loss functions based on image 
similarity could be used for training neural networks that 
produce dense deformation fields.

VoxelMorph (3) is one of the unsupervised methods, 
which has been developed for 3D brain MRI registra-
tion. Using a U-Net architecture (8), VoxelMorph takes 
a pair of images as input and produces a dense defor-
mation field to warp one image onto another. The au-
thors showed that performance comparable to ANTs was 
achieved while being 150 times faster at registering new 
image pairs. However, as for the majority of deep-learn-
ing registration models, the registration function learned 
by the models achieves accurate registration under the 
condition that the new image pair comes from the same 
distribution (contrasts, geometric content) as the training 
dataset. This is a major drawback in the development of 
a registration pipeline for multimodal MRI data. To over-
come the issue of MRI contrast generalization, Hoffmann 
et al. (9) introduced SynthMorph, in which training data 
are generated from a patch-based noise distribution. 
This approach is completely unsupervised and has been 
shown to generalize well to multiple MRI contrasts (and 
possibly other imaging modalities).

Several works have used deep learning to develop 
end-to-end medical image registration pipelines (10–13), 
yet none of them have been developed for spinal cord 
(SC) data. Zhao et al. (10) proposed cascading registra-
tion subnetworks and evaluated the performance of their 
approach on brain MRI and liver CT data. They showed 
a significant performance gain using successive registra-
tion subnetworks. Only McKenzie et al. (14) studied SC 
registration using deep-learning models, with generative 
adversarial networks. They showed that transforming the 
multimodal problem into a unimodal one led to registra-
tion that is more accurate.

This work extends the original SynthMorph approach 
by implementing a registration method consisting of two 
cascaded models to accommodate images with large 
displacements. We evaluate this registration method 
in the context of SC registration, which, contrary to the 
brain, includes additional challenges related to the high-
ly deformable structure of the spine. Original aspects of 
this work include the following:

1.	 An end-to-end registration framework compati-
ble with any 3D imaging data organized accord-
ing to the Brain Imaging Data Structure (BIDS) 
convention (15). The framework is distributed as a 
standalone open-source Python library.

2.	 The registration module consists of two succes-
sive registration models: a coarse registration 
model to accommodate images that are far apart 
and a finer model to ensure high accuracy of reg-
istration results.

3.	 The registration module can accommodate imag-
es of any size. If RAM is a limitation (in the case of 
large 3D images), the pipeline includes an algo-
rithm to register sub-volumes and concatenate all 
sub-warping fields in space.

4.	 The post-registration analysis modules allow us to 
quickly and easily get an idea of the registration 
accuracy from a qualitative and quantitative point 
of view. This analysis is tailored to SC images.

MATERIALS AND METHODS

SynthMorph

SynthMorph (9) is a strategy developed to train deep- 
learning models for deformable (nonlinear) registration. 
The method is based on unsupervised learning and con-
sists of three main blocks, illustrated in Figure 2, which 
are involved in each iteration of the learning process: 
label map generation from noise distribution, grayscale 
image generation and the Convolutional Neural Network 
(CNN) with its contrast-agnostic loss used for registration. 

Fig. 1.  Representative workflow of iterative image registration. The interpolator building block is used to evaluate moving image voxel intensities at non-grid posi-
tions, while the sampler building block defines the subspace of voxels on which the similarity metric is computed. The transformation can be rigid, affine or deformable, 
for example.
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The label map generation process allows the creation of 
the training dataset for the registration models (125 label 
maps for each model). From a smoothly varying noise 
image, acquired at low resolution and then up-sampled, 
a random deformation field is applied to create defor-
mations and curves in the image. This process is repeat-
ed N times, to generate N different images and create a 
label map by assigning to each voxel in the label map the 
label {1, 2, ..., N} corresponding to the image that has the 
highest intensity for that voxel. These label maps are then 
used in the SynthMorph learning strategy to produce un-
registered pairs of synthetic multi-contrast grayscale im-
ages at each iteration of the learning process. The final 
goal of this method is to obtain a contrast-agnostic reg-
istration model that takes as input a pair of images of any 
MRI contrasts and produces a warping field to register 
the moving image to the fixed one.

The SynthMorph authors demonstrated for brain MRI 
data that their registration model matches the state-of-
the-art performance of iterative methods, such as ANTs 
(1) and NiftyReg (16), and deep-learning registration 
method, VoxelMorph (3), within contrasts and improves 
registration accuracy on multimodal data.

The SynthMorph method was chosen to obtain 
deep-learning registration models for the pipeline and 
was implemented and adapted from the publicly available 
code at https://github.com/voxelmorph/voxelmorph.

Pipeline

The developed registration pipeline provides an easy-to-use, 
accurate and fast solution for multimodal 3D registration. 
This is achieved in a (almost) fully automated environment 
consisting of six main parts, illustrated in Figure 3.

1. Configuration file

A JSON configuration file, specific to the pipeline, is used 
to specify parameters that can be modified in the pipe-
line (interpolation and registration on sub-volumes or the 
entire volumes). The user has also to specify at the be-
ginning of the pipeline (shell script) the contrasts of the 
images to co-register, which post-registration analyses to 
perform and how to organize the registration results.

2. Dataset integration

Any dataset organized according to the BIDS (15) con-
vention is compatible with the registration pipeline with-
out requiring manual interventions.

3. Preprocessing

The preprocessing steps, performed automatically within 
the pipeline and on all images, include scaling the voxel 

Fig. 2.  From SynthMorph: Learning contrast-invariant registration without acquired images (9). Representation of the SynthMorph learning strategy to generate 
data and train a contrast-agnostic registration model.

Fig. 3.  Overview of the deep learning–based contrast-agnostic registration pipeline and its evaluation tools. Using parameters specified in the configuration file 
(no. 1), each pair of images in a Brain Imaging Data Structure (BIDS) dataset (no. 2) is preprocessed (no. 3) and registered using two cascaded models (no. 4). Post-
registration analyses (nos. 5–6) are performed to gain insight into the accuracy of registration, focusing primarily on the spinal cord.

https://github.com/voxelmorph/voxelmorph
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values between 0 and 1 (min–max scaling), resampling 
the 3D images to 1 mm isotropic resolution, placing the 
moving image in the fixed image space and zero pad-
ding each dimension to the nearest multiple of 16.

4. Cascaded registration

Two registration models, trained with the SynthMorph 
method (9), are used in succession. The cascaded archi-
tecture was developed to allow the registration of widely 
displaced images (1–2 cm) while ensuring high-registra-
tion accuracy. This is done without further deteriorating 
the image resolution or increasing the interpolation error, 
as the warping fields obtained from the two models are 
composed before transforming the moving image. The 
objective of the first deformable registration model is to 
roughly align the images, while the second model refines 
the registration. Therefore, these registration models 
were trained on different training datasets to learn differ-
ent types of transformations. The difference in the training 
datasets relies on the relative resolutions at which noise is 
sampled to generate warping fields and deform the label 
maps to create an unregistered pair of images. The first 
model was trained on pairs of images that were unregis-
tered using smooth deformation fields. The second model 
was trained on deformation fields with sharper and more 
localized deformations. An example of deformation fields 
specific to the two different models is shown in Figure 4, 
where heat maps representing the translation intensity (in 
voxels) applied to each voxel to deform the training data 
and obtain unregistered images can be observed.

5. Postprocessing

Using the composed 3D warping field, the moving 
image is registered to the fixed image. For each voxel 
of the moving image, a new voxel location is comput-
ed to determine the voxel value in the registered image. 
However, since the image values are only defined at inte-
ger locations, the values must be interpolated. The user 
can choose between trilinear or nearest neighbor inter-
polation to obtain the moved image. The warping field 
and registered volume are also transformed back into the 

native space of the moving image space, in addition to 
the results obtained in the fixed image space. This offers 
the possibility to bring the fixed image into the space 
of the moving image (instead of the other way around), 
which could be useful for some processing methods.

6. Post-registration analyses

The pipeline offers a choice of different analyses that 
are directly executed at the end of the registration per-
formed by the deep-learning models and can be select-
ed independently depending on the study of interest. 
Both quantitative and qualitative validation tools are 
incorporated, focusing primarily on the SC. These tools 
cannot fully replace a visual assessment of the registra-
tion, looking at the whole fixed, moving and moved im-
ages. However, they provide complementary information 
that should be used to easily identify whether or not the 
registration produced the expected results for individual 
subjects, thus saving time and providing a useful general 
overview of the registration accuracy.

Registration Models

The deep-learning registration models used in the pipe-
line were trained with the SynthMorph method (9), and the 
parameters were specified in Table S1. The networks were 
implemented using TensorFlow/Keras (17). The training 
uses the Adam optimizer (18) and was done on an NVIDIA 
RTX A600 GPU. The training time of 1 epoch (100 steps, 
mini-batch size of 1) was approximately 150 seconds.

Evaluation

Data

The pipeline was validated using a publicly available 
multi-subject dataset1 (19) acquired at 42 centers fol-
lowing the spine-generic protocol (20). The dataset 

Fig. 4.  Example of deformation fields used to generate unregistered image pairs during the registration models learning process. Displacement intensity (in voxels) 
in the x, y and z directions is shown for each voxel within a specific slice. The deformations applied in model 2 are more localized.

1  https://github.com/spine-generic/data-multi-subject#spine-generic-public- 
database-multi-subject

https://github.com/spine-generic/data-multi-subject#spine-generic-public-database-multi-subject
https://github.com/spine-generic/data-multi-subject#spine-generic-public-database-multi-subject
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(spine-generic dataset) is composed of MRI data from 
267 healthy subjects obtained at multiple sites and from 
multiple MRI manufacturers (GE, Philips and Siemens) 
and models. For each subject in the dataset, multimodal 
(multi-contrast) MRI data of the SC were acquired (e.g., 
3D sagittal T1w and 3D sagittal T2w) and resampled to 
an isotropic resolution (e.g., 1 mm for T1w and 0.8 mm for 
T2w), which is assumed to be the effective resolution. In 
this study, the experiments were performed on the sag-
ittal T1w and T2w contrasts. The spine-generic dataset is 
organized according to the BIDS convention (Figure 5).

For some experiments, affine (rotation, scaling, trans-
lation) transformations were applied on specific MRI con-
trast of the dataset.

Dice similarity coefficient on SC segmentations

Using the Spinal Cord Toolbox (SCT) (21) and the  
sct_deepseg_sc framework developed by Gros et al. (22), 
SC segmentations are computed independently, within 
the pipeline, for the moving, fixed and registered images. 
As shown in Gros et al. (22), the developed framework for 
SC segmentations handles the heterogeneity of image 
acquisition features well, providing accurate SC segmen-
tations on a multicenter, multiresolution, multi-contrast 
dataset. Moreover, the quality of the automatic segmen-
tation applied to the spine-generic dataset was already 
assessed in previous studies by Bautin et al. (23), and 
only minor corrections were required in a few subjects. 
Therefore, SC segmentations of the moving, fixed and 
registered images are reliable enough to calculate volu-
metric overlap metrics, such as the Dice similarity coeffi-
cient, to evaluate registration in a quantitative approach, 
focusing on SC.

Baselines

Classical registration was tested using ANTs (1) (symmet-
ric nonlinear normalization (SyN) and rigid registration 
(Rig)) and axial slice-by-slice regularized (SliceReg) (24) 
registration through the sct_register_multimodal com-
mand line of the SCT (21). Different registration strategies 

were designed to allow a broad comparison with the de-
veloped approach. For each registration method tested, 
the fixed (T1w) and moving (T1w or T2w) images were re-
sampled to 1 mm isotropic resolution to apply the same 
preprocessing as in the registration pipeline. Preliminary 
investigations were conducted to select the parameters 
of the different methods.

SyN

ANTs deformable registration. Mutual information is 
used as a similarity metric to optimize the registration 
problem through the symmetric nonlinear normalization 
(SyN) algorithm. Images are downsampled by a factor 
of 2 to allow for larger deformations and faster com-
putations, and a smoothing factor of 0.5 mm is used. 
Registration is performed for 30 iterations with a gradi-
ent step size of 0.5.

RigSlicereg

ANTs rigid registration & SliceReg registration. This ap-
proach is better suited than conventional affine or rigid 
methods for the SC registration due to the articulated 
nature of the spine. The mutual information similarity 
metric is used for the rigid registration and the SliceReg 
algorithm. Both registration steps are performed for 30 
iterations with a gradient step size of 0.5.

RigSliceregSyn

ANTs rigid registration & SliceReg & ANTs deformable 
registration. Parameters similar to SyN and RigSlicereg 
are used for the deformable, rigid and slice-by-slice reg-
ularized registration.

RigSliceregSynMask

ANTs rigid registration & SliceReg & ANTs deformable 
registration focusing on the SC using a mask to optimize 
the similarity metric. The mask is obtained by dilating the 
SC segmentation using a mathematical morphology op-
eration with a ball-shaped structuring element of radius 
8 voxels. Parameters similar to SyN and RigSlicereg are 
used for the deformable, rigid and slice-by-slice regular-
ized registration.

SCSegReg

Registration is based on SC segmentation (upper base-
line for SC registration). SC alignment is maximized by 
iterative algorithms using a cost function computed over 
the SC segmentations. Therefore, this process is ex-
pected to provide the most accurate registration results 
based on SC overlap. It consists of a first affine (trans-
lation, rotation and scaling) registration step followed 
by an axial slice-by-slice regularized registration and a 
deformable registration using mean squares similarity 
metric. Each registration step is performed for 30 itera-
tions with a gradient step size of 0.5, and the deformable 
registration is performed on images downsampled by a 
factor of 2.

Fig. 5.  Example of T1w and T2w 3D MRI data of the spine-generic dataset 
(sagittal view).
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smshapes

The publicly available deep-learning registration model,2 
smshapes, obtained by the authors of the SynthMorph 
method (9) is used as a benchmark to evaluate the im-
provement (or deterioration) of the proposed approach, 
which uses two cascaded models.

Various experiments were conducted, representing re-
alistic scenarios in terms of proximity of the images to 
co-register and the variety of contrasts to validate the 
registration pipeline.

Experiment 1: Intra-subject, multimodal, small movements 
between images

The T2w image was registered to the T1w image for each 
of the 267 subjects in the spine-generic dataset. Each 
pair of images in the dataset was included in the anal-
ysis, as it was visually assessed that subjects moved very 
little between T1w and T2w scans in the condition used 
to acquire the spine-generic dataset. Registration is per-
formed using two successive deformable deep-learning 
registration models (cascaded models) and using each of 
the baselines. Registration accuracy, based on the Dice 
score (DSC) of the SC segmentations, is compared be-
tween the methods. Using paired two-sided t-tests, the 
statistical significance of the mean difference between 
the methods is determined. A visualization of some fixed, 
moving and moved images is provided to qualitatively 
assess the differences between the registration methods.

Experiment 2: Intra-subject, multimodal, large movements 
between images

Similar analyses than in Experiment 1 are performed but 
using a dataset where the T2w images have been affine 
transformed (rotated, scaled and translated) to study 
how the different models/methods generalize on largely 
linearly shifted data. Therefore, random affine transfor-
mations were applied to the T2w data of each pair of im-
ages before registration. The transformations range from 
−5 to 5 degrees for rotation, from 0.95 to 1.05 for scale 
factor and from −5% to 5% of the field of view in each di-
rection for translation (e.g., for a field of view of 100 mm, 
the displacement range would be −5 to 5 mm). The mag-
nitude of the transformations is chosen randomly and 
independently for each T2w image, the goal being to 
study the registration accuracy over a wider spectrum of 
data by adding these linear transformations. The impact 
of the transformations on the registration accuracy (DSC 
of SC segmentations) is studied, and some deformation 
fields are visualized using the Jacobian determinant.

Experiment 3: Inter-subject, unimodal

The image pairs to be registered are formed by using 
the T1w MRI image of each subject in the dataset as a 
fixed image and randomly selecting a T1w MRI image of 

any other subject in the dataset as a moving image. This 
leads to pairs of images that have very few features in 
common, with different orientations, different positions 
and different relative voxel intensities. The resulting reg-
istration task is too complex to apply deep-learning mod-
els directly without prior data preprocessing. Therefore, 
in this case, additional steps were included before the 
registration of the cascaded models to account for the 
different scenarios that may be encountered. First, using 
existing labels of the intervertebral disc position, the 
discs between the C2/C3 and C7/T1 vertebrae in fixed 
and moving images are aligned through XYZ translation 
to approximate the SC registration. The position of the 
pontomedullary junction (automatically detected using 
SCT) in both images is used to translate the moving 
image along the right-left and posterior-anterior axes to 
coarsely align the brain structure. Finally, the SC segmen-
tations are computed to perform an axial slice-by-slice 
alignment of the SC center of mass. Deep-learning reg-
istration models then use these images to register the 
entire volume and refine the SC registration. This pro-
cess, described in Figure 6, is more complex than the 
intra-subject registration task because of the extreme 
variations that can occur in pairs composed of random-
ly selected subjects. However, it does not involve any 
time-consuming iterative process based on voxel in-
tensities or image features. No baseline comparison is 
performed in Experiment 3, as the task is too complex 
to perform direct image registration without any prepro-
cessing for both the classical and the deep-learning reg-
istration methods tested in Experiments 1 and 2.

Nine subjects from the spine-generic dataset were re-
moved for this analysis because the labels of their inter-
vertebral discs were not present in the dataset. Therefore, 
results were computed on 258 pairs. The DSC obtained 

2  https://github.com/voxelmorph/voxelmorph/tree/dev/data#models

Fig. 6.  Inter-subject registration process. The orientation of the 3D images is in-
dicated by S (superior), I (inferior), R (right), L (left), P (posterior) and A (anterior). 
(1) Translation in the S-I, P-A and R-L directions to align the positions of the C2/
C3 and C7/T1 intervertebral discs (white dots, existing labels). (2) Translation 
in the R-L and P-A directions to align the pontomedullary junction of fixed and 
moving images (blue dot, automatically detected with Spinal Cord Toolbox 
(SCT)). (3) The spinal cord segmentations of the fixed and moving images are 
used to perform a slice-by-slice axial alignment of the spinal cord using the cen-
ter of mass. (4) Deep-learning deformable registration using cascaded models.

https://github.com/voxelmorph/voxelmorph/tree/dev/data#models
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after the different steps of the process is studied to de-
termine the accuracy of the SC registration. Typical reg-
istration results are displayed to observe how the differ-
ent structures of the moving image are registered to the 
fixed after each stage of the inter-subject registration 
process. The effect of the deep-learning models on the 
SC registration is investigated qualitatively by examining 
quality control reports.

RESULTS

Experiment 1

Figure 7 illustrates typical results (sub-geneva05, sub- 
oxfordOhba03, sub-vallHebron06 and sub-barcelona03) 
for the different registration methods. A single slice is 
shown in the sagittal view for each 3D image. The cas-
caded and smshapes models demonstrate overall good 
registration results on the subset of four subjects. For the 
cascaded models, some overly strong deformations are 
applied on the cerebrospinal fluid of sub-geneva05, cre-
ating an undesirable ripple effect in the fluid surround-
ing the SC (white arrows in the figure). For the smshapes 
model, the registration of the intervertebral discs of 
sub-vallHebron06 is poorly accurate. Apart from these 
observations, both deep-learning methods show accu-
rate registration, close to that obtained with SCSegReg, 

the upper baseline for the SC registration. For classical 
registration methods, the results are extremely variable. 
Even methods used specifically for SC registration (i.e., 
including SliceReg) do not always lead to satisfactory 
image alignment. For instance, the results of RigSlicereg 
for sub-vallHebron03 show that the iterative registration 
algorithms probably reached a local minimum of the cost 
function (i.e., similarity metric) that is far from the global 
minimum that would lead to a registration similar to that 
obtained with SCSegReg.

Figure 8 compares the registration accuracy of the 
cascaded registration approach with all baselines, based 
on the DSC of the SC segmentations. These results in-
dicate that the cascaded approach obtains the best 
accuracy for the SC registration among all registration 
methods (except for SCSegReg, the upper baseline, 
which performs registration by maximizing the overlap 
of SC segmentations). It outperforms classical methods 
(p < 1.3 × 10−24) and improves the original SynthMorph 
model (smshapes, p < 0.009). Although preliminary re-
search was conducted to select the parameters of the 
classical methods for this specific registration task, re-
sults show that none of these methods improve the reg-
istration accuracy of the original image pairs (p < 0.6 for 
RigSlicereg, the classical method with the most accurate 
SC registration results). The upper baseline, using the 
SC segmentations to register the SC, achieves a medi-
an DSC of 0.939, while the cascaded and the smshapes 

Fig. 7.  Representative intra-subject multimodal registration results for the deep-learning models and classical methods. Each row shows a pair of fixed (T1w MRI 
contrast) and moving (T2w MRI contrast) images followed by the warped image obtained using the different methods. The results obtained with the RigSliceregSyn 
and RigSliceregSynMask methods are not displayed to better visualize the results of the other methods. The Dice score (DSC) representative of the spinal cord seg-
mentations overlap between the fixed 3D image and the moving or moved 3D image is displayed. The median DSC was obtained on the 267 subjects of the dataset. 
White arrows highlight the ripple effect created by the deep-learning registration on sub-geneva05 data.
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models achieve a median DSC of 0.915 and 0.912, re-
spectively. These results were computed on images with 
mostly small motion and variations between the two 
scans (T1w and T2w), as illustrated in Figure 8 by the high 
DSCs (median of 0.801) of the image pairs before any 
registration method was used. A DSC of 0 is obtained for 
8 and 29 image pairs for RigSlicereg/RigSliceregSyn and 
RigSliceregSynMask, respectively. These results are ob-
tained because the joint probability distribution function 
of the two images summed to zero during the axial slice-
by-slice regularized registration step. Therefore, the mu-
tual information similarity metric could not be computed 
and the iterative registration process could not be opti-
mized properly.

Experiment 2

Differences in the registration results between methods 
are increased when compared with data with more dis-
tant initial positions. Figure 9 shows the results of the DSC 
analysis. In contrast to Figure 8, the DSCs are lower and 
more scattered for each method. The SCs are initially less 
well aligned in each pair of multimodal images (median 
DSC of 0.116) because of the random affine transforma-
tions applied to the moving image (T2w contrast). The 
cascaded registration approach achieves the most accu-
rate registration results based on SC overlap, with a me-
dian DSC of 0.857. It outperforms smshapes, the other 
deep-learning registration model (median DSC of 0.769, 
p < 9.4 × 10−13) with a 95% confidence interval of 0.079 ± 

0.02 for the pairwise DSC difference. The classical meth-
ods fail to achieve satisfactory registration results while 
improving (statistically significantly, p < 9.5 × 10−38 for the 
most accurate method) the registration compared with 
the initial positions. The best results for the image-based 
iterative registration methods are again obtained with 
rigid registration followed by axial slice-by-slice regular-
ized translation (RigSlicereg) with a median DSC of 0.597. 
The best overall results are obtained with SCSegReg, the 
method using SC segmentations to optimize registration.

Figure 10 qualitatively compares the registration re-
sults obtained by the different methods. The results 
highlight the impact of specific motion on the regis-
tration accuracy. For sub-geneva05, the T2w data were 
transformed before registration with −4.9 degrees of 
rotation along the right-left and inferior-superior axes, 
3.8% shrinkage and 1, −1 and 4 voxel translation for the 
right-left, posterior-anterior and inferior-superior axes, 
respectively. These transformations did not lead to a 
significant decrease in the SC registration accuracy of 
the deep-learning models, as it can be visually observed 
by comparing the first two rows, but a less accurate reg-
istration of the intervertebral discs and cerebrospinal 
fluid is observed for the smshapes model. RigSlicereg 
exhibits a significant loss in the registration accuracy 
due to the transformation constraints of the method 
(global translation, slice-wise translation and rotation, 
no scaling). With the registration results obtained on 
sub-barcelona03, we have an idea on how the models/
methods process the translated data, as the T2w image 
of this subject was transformed with −1, 13 and 11 vox-
els translation for the right-left, posterior-anterior and 
inferior-superior axes, 1.3% shrinkage and less than 

Fig. 8.  Registration accuracy (intra-subject, multimodal) of the different mod-
els/methods compared, focusing on the spinal cord. Accuracy is evaluated 
using the Dice score (DSC) representative of the volume overlap of spinal cord 
segmentations. Each box summarizes the registration results obtained on the 
267 subjects of the dataset for the registration of the T2w modality to the T1w. 
The dots represent the DSC obtained for each subject.

Fig. 9.  Registration accuracy (intra-subject, multimodal) of the different mod-
els/methods compared, on the affine-transformed dataset. Accuracy is evalu-
ated using the Dice score (DSC) representative of the volume overlap of spinal 
cord segmentations.
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0.3 degrees rotation. Considering the deep-learning  
models, this transformation is best handled with the cas-
caded approach, which leads to a registered image sim-
ilar to the one obtained without prior transformation. 
In contrast, smshapes shows a significant decrease in 
registration accuracy when registering the transformed 
data. Interestingly, this transformation has no effect on 
RigSlicereg, certainly due to the translational nature of 
the deformation.

The comparison of the warping field obtained with 
the cascaded models to that resulting from the sm-
shapes registration gives information about the spec-
ificities of the two approaches. The 3D image of the 
Jacobian determinant, automatically computed by the 
pipeline, is used to better visualize the warping fields 
and the transformations applied to register the mov-
ing image. Figure 11 compares the warping fields on 
the two subjects studied in Figure 10. For the results 
of sub-geneva05, the deformations applied in the 
two approaches appear to be quite different, even in 
the SC area where both methods lead to a high DSC, 
as observed in Figure 10. This result highlights the 
ill-conditioned property of the deformable registra-
tion problem. The results on sub-barcelona03 show 
the limitations of smshapes with a lot of local folding 

(black voxels, negative Jacobian determinant). In con-
trast, the transformations applied with the cascaded 
models are smoother and include fewer folding voxels. 
Therefore, this analysis of the Jacobian determinant of 
the deformation fields indicates that, when the data 
are initially further apart, the cascaded models apply 
more realistic transformations to register the images 
than smshapes.

Figure 12 illustrates the impact of the combination of 
affine transformations applied before registration on the 
accuracy of the SC registration using the cascaded or 
smshapes models. Figure 12A highlights the benefits of 
using two successive registration models (cascaded ap-
proach), with more accurate SC registration on this trans-
formed dataset. However, as shown in Figure 12B, the 
registration accuracy decreases sharply when the trans-
formations applied before registration are too large, 
even with this approach. Figure 12B and C shows a clear 
trend indicating that the transformation with the great-
est (detrimental) impact on registration performance is 
translation, for both the cascaded and smshapes mod-
els. The effect of each transformation (rotation, scaling 
and translation) on the registration accuracy of both ap-
proaches is studied in the results section of Experiment 
S2 (Figure S4).

Fig. 10.  Example of registration results on affine-transformed data compared with results obtained when no transformation is applied before the registration task. 
The first and third rows show the results for two pairs of fixed (T1w MRI contrast) and moving (T2w MRI contrast) images of the normal dataset. The second and 
fourth rows show the registration results for the same subjects, but with the moving image that has been transformed by rotation, scaling and translation before 
registration. The Dice score (DSC) representative of the overlap of the spinal cord segmentations between the fixed image and the moving or moved image is dis-
played. The median DSC was obtained on the 267 subjects in the affine-transformed dataset. The results obtained with the RigSliceregSyn and RigSliceregSynMask 
methods are not displayed to better visualize the results of the other methods.
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Experiment 3

Figure 13 illustrates how the moving image is trans-
formed to be registered with the fixed one. The image 
resulting from each step of the inter-subject registration 

process is shown for four different pairs of images. The 
results for the first and second pairs are really accurate, 
with the final registered 3D image (last column) being 
very similar to the fixed image (first column). The differ-
ences observed between the last two columns show the 
role of cascaded deep-learning models in this registra-
tion process. The models refine the registration of the 
SC by scaling it to the correct volume and smoothing 
the entire anatomical structure. In addition, they register 
all other structures (e.g., intervertebral discs, white and 
gray matter of the brain) present in the 3D MRI imag-
es and reduce the sharp transitions that appear due to 
the previous registration task, which applies translation 
only on the axial slices of the SC. The results for the com-
posite pair of sub-cardiff04 and sub-tokyo750w07 MRI 
data (third row) are also very accurate even though the 
task is more complicated because there is a difference 
in the details that can be observed in the two images 
with the moving image showing anatomical structures 
with small differences in voxel intensity, in contrast to the 
fixed image. The results of the sub-unf05 T1w to sub- 
beijingGE03 T1w registration show a displacement of the 
intervertebral discs between the thoracic vertebrae that 
can be observed in the inferior part of the fixed and reg-
istered sagittal images. The brain registration is poorly 
accurate either, with the deep-learning models apply-
ing too much compression on the superior part. The 
edge-shading artifact observed in the fixed image may 
account for this decrease in registration accuracy com-
pared with the other image pairs.

To better observe the effects of cascaded deep- 
learning models on SC registration, we can use the quality  
control (QC) reports that are created in the registra-
tion pipeline. The QC reports provide insight into the 

Fig. 12.  Dice score (DSC) of spinal cord segmentations as a function of applied 
transformations before registration. (A) Comparison of the DSC obtained in 
the two deep-learning registration approaches. (B) and (C). DSC obtained after 
registration by the cascaded and smshapes models, respectively, as a function 
of the translation (x axis), degree of rotation (color) and scale factor (point size) 
applied to transform the moving image before registration.

Fig. 11.  Jacobian determinant of the warping field obtained for registering data that have undergone an affine transformation before the registration task. The 
Jacobian determinant gives information about the local transformation applied to each voxel. The yellow color indicates a local shrinkage, the blue color indicates a 
local expansion and the black voxels are representatives of a folding (negative Jacobian determinant).
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registration of the entire SC by qualitatively examining 
the overlap of each axial slice. Figure 14 shows the re-
sults for the sub-geneva03/sub-vuiisIngenia06 and sub- 
cardiff04/sub-tokyo750w07 pairs. The comparison of the 
second and third groups of images in each column high-
light the role of deep-learning models for SC registration. 
In these two registration examples, we can observe an 
overall expansion of the SC to match the volume of the 
fixed image. In addition, in rows 5 and 6 of the axial slices 
of subvuiisIngenia06, we can see that the deep-learning 
models perform some sort of rotational transformation 
to better register the SC. The QC reports also allow us to 
identify where the registration is not extremely accurate. 
For example, the slices in row 9 and the last columns in 
row 8 for sub-tokyo750w07 are not accurately registered 
to the T1w data of sub-cardiff04. The individual slices ap-
pear not to be large enough, suggesting that the expan-
sion applied by the deep-learning models was not strong 
enough on the inferior part of the SC.

Figure 15 shows the DSC representative of the SC 
overlap and thus the accuracy of the registration at differ-
ent stages of the process. Before any registration, these 
scores are very low or zero for the majority of random-
ly formed image pairs, due to the inherent differences 

between subjects and their positions during the scans, 
as well as the relative space of the data. The first step in 
the process, aiming to approximate the alignment of the 
SC, leads to still very low DSCs (median value of 0.288) 
due to the articulated nature of the spine, which results in 
a nonlinear relationship of this anatomical part between 
subjects. A translation along the right-left and posteri-
or-anterior axes based on the relative positions of the 
pontomedullary junction decreases the DSCs and accu-
racy of the SC registration to better align the head and 
brain structures of the two images and improve the over-
all registration. The next step in the process significantly 
improves the accuracy of the SC registration, as the seg-
mentations of this structure are used to perform a slice-
by-slice axial alignment. After this step, the median DSC 
is 0.837. This score is not higher because there is no reg-
istration along the inferior-superior axis (transformations 
are performed only slice by slice) and the transformation 
for each slice is limited to a simple center-of-mass align-
ment (e.g., no rotation or scaling). Finally, the application 
of the cascaded deep-learning registration models leads 
to very high DSCs (median value of 0.907), which shows 
the advantages of the deformable registration step even 
for the accuracy of SC registration. Overall, the DSCs 

Fig. 13.  Results of unimodal inter-subject registration at different stages of the registration process. Each row shows a pair of fixed (T1w MRI contrast of one subject) 
and moving images (T1w MRI contrast of a different subject) followed by the transformed moving image after each step. The Dice score (DSC) representative of the 
overlap of the spinal cord segmentations between the fixed and moving 3D image is displayed. The median DSC was obtained from 258 pairs of images.
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obtained at the end of the process reflect a robust and 
accurate registration pipeline, especially considering the 
difficulty of this task, illustrated by the low DSCs at the 
beginning of the process.

DISCUSSION

We propose a comprehensive framework for 3D MRI 
image registration based on deep-learning models 
trained with the SynthMorph strategy. We extend this 
method by cascading the registration models to account 

for large deformations and evaluate the registration 
results on SC data for multimodal/unimodal intra-/in-
ter-subject tasks.

The following sections discuss the performance and 
limitations of the cascaded registration models com-
pared with the benchmarks, as well as potential direc-
tions for improvement and generalization of the study 
after an initial review of the pipeline options and the reg-
istration validation strategy.

Registration Pipeline and Validation Strategy

Building on SynthMorph, we have developed a publicly 
available framework that can adapt to different scenarios 
with minimal user intervention to provide an easy-to-use, 
deep learning–based end-to-end registration pipeline 
that is both faster and more accurate than traditional 
registration techniques.

A wide spectrum of options is included in the pipeline 
to allow the user to choose which interpolation methods 
to use, which MRI modalities to co-register and to pro-
vide the ability to process multi-sessions data or perform 
sub-volume registration. All results presented in this 
study were obtained directly from the post-registration 
evaluation tools built into the pipeline. The variety of 
tools provides an indication of the registration accura-
cy achieved by the deep-learning models, both quan-
titatively and qualitatively. Computed SC metrics are a 
straightforward method to determine the accuracy of 
SC registration over a large number of registered image 
pairs and allow comparison of different models/meth-
ods based on the registration performance obtained on 

Fig. 14.  Results of the inter-subject unimodal registration quality control report. Axial sections of the spinal cord are displayed to control its registration. The first 
group of images represents spinal cord axial slices of fixed images while the second and third groups of images represent spinal cord axial slices of moving images at 
different stages of the inter-subject registration process. Comparison of second and third groups of images shows the effects of the cascaded deep-learning models 
on spinal cord registration. The Dice score (DSC) representatives of the spinal cord overlap between the fixed and moving/registered images are shown.

Fig. 15.  Accuracy of spinal cord registration (Dice score (DSC)) after the dif-
ferent steps of the inter-subject (unimodal) registration process. Results were 
obtained on 258 pairs of images. The T1w modality of each subject in the 
spine-generic dataset was used as the fixed image. The moving image (T1w) 
was randomly selected for each fixed image.
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large datasets. Visualization of the Jacobian determinant 
of the warping fields is important in specific registration 
tasks to determine whether the transformations applied 
to register the moving image are realistic and relevant 
from a biological/physical perspective. Finally, the QC 
reports show the effects of the registration on the entire 
SC with the representation of all axial sections of the SC 
for the fixed, moving and registered images, thus quali-
tatively determining the registration accuracy.

Baseline Comparison

Figures 7 and 8 illustrate the complexity of using tradi-
tional registration methods on multimodal SC MRI data. 
Since there is no specific intensity-based relationship 
between modalities, the difficulty of quantifying the sim-
ilarity between the images used to guide the iterative 
process is increased. Mutual information, which mea-
sures the mutual dependence between images, was 
used in this work because it is considered the gold stan-
dard similarity measure in multimodal registration tasks 
and has been shown to scale to different intensities be-
tween modalities (25, 26). However, this metric has some

limitations, as it does not account for spatial informa-
tion and its performance decreases in the presence of 
local intensity variations (27). The results obtained with 
traditional methods tend to confirm the limitations of the 
mutual information similarity metric with performance 
that cannot match that of learning-based registration fea-
tures for the multimodal registration task. Furthermore, 
even though the parameters used in these methods were 
selected based on preliminary results on a subset of the 
data, they may not be optimal for the registration task 
on that dataset (e.g., smoothing factor, shrinkage factor, 
gradient step, number of iterations, degree-of-freedom/
deformation constraints). A drawback of these classical 
registration methods is hence the need to optimize the 
parameters for each new pair of images to be registered, 
which increases the difficulty and uncertainty of the regis-
tration task. With deep-learning models, parameter op-
timization is only performed during the network-training 
phase. Therefore, using the trained models provided in 
the registration pipeline, any user could directly register 
their data and obtain consistent (less scattered, as ob-
served in Figure 8) results over the entire dataset without 
having to change the parameters.

The registration module, consisting of two successive 
registration models, has been developed to accommo-
date larger deformations than the original SynthMorph 
model (smshapes). However, this approach should not 
lead to a reduction of the registration accuracy on data 
requiring only minor and localized deformations. The 
results obtained in Experiment 1 showed that on image 
pairs consisting of successive MRI scans of different mo-
dalities (small movements of the subjects between scans), 
the cascaded deep-learning models obtained similar 

and even slightly better results than smshapes. These 
results, therefore, tend to confirm the effectiveness of 
the second model in its role of refining the registration 
results to ensure high accuracy on localized deforma-
tions. In Experiment 2, the random translations, rotations 
and scaling applied to the moving image before regis-
tration complexified the task with initially more distant 
data. Once again, traditional methods did not provide 
satisfactory registration, with low median DSCs and large 
discrepancies in results. For Experiments 1 and 2, high-
ly accurate SC registration results are obtained with the 
SCSegReg method. This method differs from traditional 
image-based registration methods, as it relies on SC seg-
mentations to register data, which explains the extreme-
ly good registration results evaluated using overlapping 
SC segmentations. The disadvantage of this method 
compared with the cascaded deep-learning approach is 
its need for SC segmentations to optimize the registra-
tion process. In addition, this method only registers the 
SC, but not the other structures or tissues. Therefore, for 
global registration, deep-learning approaches should be 
preferred.

The comparison of the results obtained with smshapes 
and the cascaded approach reflects the advantages of 
using cascaded models for deep-learning registration. 
The latter leads to a higher median DSC and fewer mis-
registered image pairs. It shows that the first model, 
trained using smoother deformation fields, is useful for 
coarse image registration before the second model re-
fines the registration of smaller structures. However, it 
appears that the registration is somewhat less accurate 
(low DSCs, Figure 9) for some of the 267 image pairs 
registered, which also shows some limitations of this 
method when both images to co-register are initially too 
far apart.

Limits on Multimodal Intra-Subject Registration

The results observed in Experiment 3 suggest that the 
limits of cascaded models appear mainly when the data 
are heavily translated. The study of the independent 
impact of the different transformations (rotation, scal-
ing and translation) on the accuracy of the intra-subject 
multimodal registration, performed in Experiment S2, 
confirms the detrimental effect of translation on the reg-
istration accuracy. The cascaded models support trans-
lation up to 12 to 14 voxels (1.2 to 1.4 cm), but larger 
differences in the data to be registered result in a signif-
icant decrease in registration performance (Figure S4C). 
However, the results show a significant improvement 
over smshapes (single model) for which SC registration 
accuracy is already reduced after translations with norm 
vectors of 6–8 voxels (0.6–0.8 cm).

Different methods could be considered to improve 
the registration of highly translated data. The first model 
of the cascaded approach could be trained on even 
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stronger deformations than was done by increasing the 
parameter that determines the maximum standard de-
viation for drawing the Gaussian distribution of noise in  
the unregistration process of the label map pairs (vel-std). 
This could allow the former model to handle larger de-
formations (especially translations) but potentially at the 
cost of reduced registration performance when only small 
transformations are required. Zhao et al. (10) showed that, 
with their subnetworks registration strategy, the most ac-
curate registration results from multimodal brain and liver 
data were obtained using three successive subnetworks. 
Therefore, similar to what was observed in this study, we 
could expect an increase in registration accuracy by cas-
cading more than two deep-learning models. Due to the 
composition of the warping fields, this process would not 
increase the interpolation error.

Inter-Subject Registration

To counteract the limitations observed when the data 
have very little in common, additional steps were added 
to the pipeline for the inter-subject registration task. 
These steps require labeling of the pontomedullary junc-
tion and two intervertebral discs to perform a coarse 
alignment of the brain and spine structures of the two 
volumes and to ensure that the deep-learning models 
achieve accurate registration. Therefore, the inter-subject 
registration task is somewhat more restrictive than the  
intra-subject one. However, the required labels do not 
need to be precise, meaning that either they could be 
quickly defined by the user or an algorithm could be de-
veloped to automatically detect these areas. In addition, 
they allow for fast registration results, as they do not re-
quire an iterative image-based process and are not de-
pendent on the modality of the image. That is why this 
approach was preferred over using affine or rigid im-
age-based preregistration (which is time-consuming and 
not always accurate for multimodal data), or the direct use 
of cascaded deep-learning registration models (which can 
lead to inaccurate registration if the data are too far apart).

Experiment 3 showed very good registration results 
for unimodal data (Figures 13 and 15) with significant im-
provement in global and SC registration after using the 
cascaded deep-learning models. With multimodal data, 
the positive effect of the deformable registration step is 
less pronounced, with SC registration deteriorating in 
some examples (Figures S2 and S3). The inter-subject 
multimodal registration process is extremely complex be-
cause the appearance of the anatomical structures to be 
registered differ in the two 3D images, due to the image 
acquisition process, the inherent properties of the sub-
jects and the highly deformable structure of the spine. 
Taking these aspects into account, the registration results 
are satisfactory, although better results are obtained by 
limiting the registration to one modality (inter-subject, 
unimodal) or to one subject (intra-subject, multimodal).

Perspectives

We extended the work done by Hoffmann et al. (9) 
in SynthMorph by cascading the registration models 
and evaluating the performance of SC data. The re-
sults obtained in the different experiments showed that 
SynthMorph is a suitable deep-learning registration strat-
egy for SC images. Considering that SynthMorph was ini-
tially tested on brain and cine-cardiac data by Hoffmann 
et al., the registration pipeline and cascaded models 
strategy should work for registration of images of different 
anatomical structures. An extension of this study would 
therefore be to test the pipeline and the cascaded regis-
tration models on the registration of different body parts. 
This would include the integration of additional assess-
ment tools to qualitatively and quantitatively evaluate the 
results of the registration, as has been done for the SC.

The inter-subject registration task was evaluated by 
forming random pairs of subjects from the dataset and 
obtained generally accurate registration results. This is 
encouraging for another interesting registration task that 
was not explored in this work: registration to template. 
Registering data from different subjects in a common ref-
erence space allows calculation of morphometry, func-
tional analyses and is useful for reproducibility and for 
performing multicenter studies. For SC data, registration 
can be performed on the PAM50 template (28). Accurate 
template-based registration is essential to transpose the 
available masks and labels (e.g., white/gray matter mask, 
pointwise vertebral body labels, pointwise intervertebral 
disc labels) to the data of interest and perform addition-
al analyses and comparisons between different subjects. 
It would therefore be interesting to extend the pipeline 
and provide the ability to perform registration to tem-
plate for a complete dataset.

We evaluated multimodal and unimodal registra-
tion using T1w and T2w MRI modalities. However, 
SynthMorph has been developed to be contrast agnos-
tic and to obtain accurate registration results regardless 
of the modality used. Therefore, it would be interesting 
to use the provided pipeline to register pairs of images 
from different MRI modalities than T1w and T2w and to 
evaluate the similarities or discrepancies in the resulting 
registration. If additional modalities are present in a data-
set, they can be used in the pipeline by simply changing 
the contrasts to co-register at the beginning of the script.

In this study, we used a heterogeneous dataset con-
sisting of multicenter data. The distribution and number 
of data points (267 subjects) were therefore quite large 
and tend to confirm that the observed results are not 
distribution specific, a characteristic of the SynthMorph 
method. However, it would be interesting to evaluate 
and compare the registration results on other datasets to 
better assess the generalizability of the cascaded models 
performance. Ideally, a reference dataset should be used 
so that the registration results obtained in this work can 
be compared with the results obtained in other studies.
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The developed pipeline can be used with any dataset 
that follows the BIDS convention. Because the registra-
tion models are not specific to a training dataset, these 
can be applied to other structures, such as brain, heart 
or liver, although the performance of the registration 
was only assessed for SC data. In addition, the present 
evaluation was only performed in healthy individuals; 
hence, it would be important to extend the evaluation in 
patients with SC pathologies, given that multimodal MRI 
can help improve the diagnosis and prognosis of some 
SC conditions.

CONCLUSION

Multimodal SC registration is a challenging problem 
due to the ill-conditioned nature of deformable regis-
tration, differences in appearance of anatomical struc-
tures caused by multimodal image acquisition, and the 
articulated geometry of the SC. Our study establishes an 
end-to-end solution based on deep-learning models for 
the registration of 3D multimodal MRI data, using a cas-
caded model strategy to account for larger deformations 
and expand the range of registration possibilities. We 
demonstrate that this solution provides accurate regis-
tration in a variety of scenarios: multimodal intra-subject 
registration, unimodal inter-subject registration and mul-
timodal inter-subject registration. The developed pipe-
line is freely accessible as a standalone Python package 
and will hopefully be useful for application to other data-
sets and for baseline comparison with modified versions 
of the architecture.
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Supplementary Methods

Registration on sub-volumes

To reduce the required computer resources (amount of 
RAM) and to accommodate large images, it is possible 
to perform the registration on sub-volumes. Therefore, 
if the choice of using sub-volumes is made via the con-
figuration file of the registration pipeline, an algorithm 
is executed to create sub-volumes, register them and 
concatenate the results to obtain a deformation field in 
the original dimension. The abrupt transitions (discon-
tinuities) resulting from concatenation are limited by a 
weighted average applied to the displacement vectors 
of the overlapping areas.

Post-registration analysis tools

Normalized mutual information

The normalized mutual information (NMI) (29) before and 
after registration is reported in a CSV file aggregating 
this information for each subject of the dataset.

( ) ( )
( ) ( )

, ,NMI F M H F M
H F H M

=
+

where H(F) and H(M) represent the marginal entropies 
of the fixed and moving (or moved) images and H(F, M) 
the joint entropy.

Spinal cord segmentation

Using the SCT (21) and the sct_deepseg_sc framework 
developed by Gros et al. (22), SC segmentations are com-
puted for the moving, fixed and registered images. The 
segmentations are saved in separate files and can be used 
to qualitatively or quantitatively evaluate the registration.

Metrics on spinal cord segmentation

As shown by Gros et al. (22), the developed framework for 
SC segmentations handles the heterogeneity of image 
acquisition features well, providing accurate SC segmen-
tations on a multicenter, multiresolution, multi-contrast 
dataset. Therefore, SC segmentations of the moving, 
fixed and registered images are reliable and can be 
used to calculate volumetric overlap metrics to evaluate 
registration in a quantitative approach, focusing on SC. 
Different metrics such as the Dice similarity coefficient 
(DSC, DSC, F1) or the Jaccard index (intersection over 
union) are computed to indicate the extent to which the 
spinal cords overlap before and after registration. The 
measurements obtained for each subject are attached in 
a CSV file aggregating this quantitative analysis of the 
registration for the entire dataset.

( , ) | | | |
| |

DSC Fseg Mseg Fseg Mseg
Fseg Mseg2 +

= +

Where |Fseg| and |Mseg| represent the number 
of voxels in the fixed and moving (or moved) image 

segmentation. And |Fseg ∩ Mseg| represents the num-
ber of voxels in common in both segmentations.

( , ) | | | |
| |

Jacc Fseg Mseg Fseg Mseg
Fseg Mseg

,
+

=

Where |Fseg ∪ Mseg| represents the union of both 
segmentations.

Quality control report

Using the functionality developed in SCT (21), a QC re-
port (HTML format) is produced to qualitatively assess 
the registration by visualizing the SC at each axial slice of 
the 3D images. These reports allow switching between 
the fixed and moving images and between the fixed and 
registered images. Therefore, they provide an easy way 
to evaluate the registration and transformation that has 
been applied along the SC. In addition, a QC report is 
created to observe the SC segmentations and ensure 
that the segmentations are accurate, indicating that the 
quantitative analysis of the registration performed on 
these segmentations is meaningful.

Jacobian determinant

The regularity of the warping fields is evaluated using the 
Jacobian matrix, which captures the local properties of 
a field around a voxel. The number and percentage of 
folding voxels (negative Jacobian determinant), where 
the deformation is not diffeomorphic, are reported in a 
CSV file. A 3D volume representative of the Jacobian de-
terminant is also saved to easily observe how the moving 
volume has been transformed to be registered with the 
fixed volume.

Data

In this study, the experiments were performed on the 
T1w and T2w contrasts. T1w 3D images ranged in size 
from 60 to 192 voxels (60–192 mm) in the right-left direc-
tion, 170 to 320 voxels (170–320 mm) in the posterior-an-
terior direction and were fixed at 320 voxels (320 mm) in 
the inferior-superior direction. T2w images ranged from 
56 to 64 voxels (45–51 mm) in the right-left direction and 
were fixed at 320 voxels (256 mm) in the posterior-anteri-
or and inferior-superior directions.

Experiment S1: Inter-subject, multimodal

Using the same process as in Experiment 3, pairs of im-
ages, consisting of a T1w MRI image as a fixed image and 
a T2w MRI image of another randomly selected subject 
as a moving image, are registered. A qualitative analysis 
showing typical results and a quantitative analysis based 
on the DSC of SC segmentations are performed.

The results were computed on 223 pairs of images. 
From the spine-generic dataset, 267 image pairs were ran-
domly formed, but 44 of them were not used because of 
the absence of intervertebral labels or the non-detection  
of the pontomedullary junction in one or both images 
forming the pair.
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Experiment S2: Limits of deep-learning models, 
multimodal, intra-subject

In this experiment, the registration accuracy is evaluated 
as a function of gradually affine-transformed (rotation, 
scaling or translation) MRI to measure the robustness 
of the cascaded approach on affinely displaced data. 
The registration results obtained using the two models 
in succession are compared with those obtained using 
only smshapes by looking at the difference in DSC as a 
function of the amplitude of the applied transformation 
before registration.

The T2w transformed image is registered to the T1w 
image for each subject in the spine-generic dataset. The 
transformation applied to the T2w image ranges from 
−10 to 10 degrees for the study of the effect of rotation. 
For the study of the scale effect, the scale factor ranges 
from 0.9 to 1.1 and for the study of translation, the T2w 
image is translated from −10% to 10% of the field of view 
in each of the three dimensions independently.

Experiment S3: Computational time comparison

The computational time to register new image pairs is 
compared between the deep-learning registration meth-
od (cascaded models) and the classical iterative regis-
tration methods, RigSlicereg and RigSliceregSyn. The 
parameters of the classical iterative registration methods 
are the same as those specified in the Baselines section. 
The comparison is performed on the registration part 
(no preprocessing or postprocessing is included as these 
parts are common to the different approaches). A sub-
set of 6 T1w and T2w MRI data pairs (sub-vallHebron06, 
sub-geneva06, sub-strasbourg01, sub-ubc01, sub-sher-
brooke05, sub-vuiisIngenia04) from the spine-generic 
dataset is used for this study. Three pairs are formed 
with images of size 192 × 256 × 320 and the remaining 
pairs are formed with images of size 192 × 320 × 320. The 
comparison of computation time is performed on the in-
tra-subject multimodal registration task and on a 64-core 
CPU machine. The range of computation time for each 
method is reported.

Supplementary Results

Experiment S1

Inter-subject multimodal registration is a truly complex 
process with differences in the anatomical structure of 
the images to be registered caused both by the image 
acquisition process and by the inherent properties of 
the subjects. Figure S2 shows the registration results, 
at different stages of the process, obtained on a sub-
set of four pairs. The transformations performed by the 
deep-learning registration models can be observed by 
comparing the last two columns. In this multimodal reg-
istration task, we can see that the benefits of applying 
the deep-learning models are mainly observed on the 
brain and the intervertebral discs. Registration of the 

SC and surrounding cerebrospinal fluid is not always 
enhanced by deep-learning models, which can create 
a ripple effect in the SC area, as observed with sub-ox-
fordFmrib09/sub-juntendo750w04 and sub-cardiff04/
sub-sherbrooke07 pairs, compared with the registration 
results observed after axial slice-by-slice SC registration. 
Although the results do not show a perfect match be-
tween the fixed image and the final registered image, 
they are pretty satisfactory considering the complexity of 
the task.

Figure S3 shows some similarities with the results ob-
tained for unimodal inter-subject registration (Figure 
15, Experiment 3). The main difference appears for the 
DSCs obtained after the registration step with cascad-
ed deep-learning models. For unimodal registration, a 
significant improvement in the SC registration accuracy 
was observed with the DSCs. With multimodal data, the 
sparse distribution of DSCs, after deep-learning registra-
tion, indicates that this step does not always improve SC 
registration, as also seen in Figure S2. The median DSC 
at the end of the inter-subject multimodal registration 
process is 0.849 (0.907 for unimodal registration).

Experiment S2

Figure S4 compares registration accuracy for the cas-
caded and smshapes models as a function of the linear 
transformation applied to the moving image before 
registration. Each sub-graph represents the pairwise dif-
ference between the DSC obtained on the normal data 
with only small movements between scans (Experiment 
1) and the DSC obtained when registering the moving 
image transformed before registration. The affine trans-
formation applied to the moving image is indicated on 
the x axis.

Considering the rotational transformation (Figure S4A), 
the registration performance starts to decrease when the 
moving images are rotated by an absolute value of 5 de-
grees or more before the registration. The effect of rota-
tion is better handled with the cascaded approach with a 
decrease in the DSC that is less pronounced than for the 
smshapes method. The difference between the methods 
is statistically significant for degrees of rotation ranging 
from −10 to −6 degrees (p < 2 × 10−4), from −6 to −4 de-
grees (p < 0.02) and from 8 to 10 degrees (p < 7 × 10−5).

Expanding or shrinking the data from 0% to 10% be-
fore registration results in only a small decrease in the 
registration performance for both methods (maximum 
median DSC decrease of 0.010 and 0.012 for cascaded 
and smshapes models, respectively) (Figure S4B). The 
difference between the methods is only significant for an 
expansion ranging from 8% to 10% (p < 0.04).

It was observed in Experiment 2 that translation is the 
transformation with which the models fail to general-
ize well. This observation is confirmed with Figure S4C, 
which shows an important decrease in DSC with increas-
ing norm of translation. While cascaded networks delay 
the decrease in the registration performance compared 



 : 2023, Volume 3	 - 18 -� CC By 4.0: © Béal et al.

O R I G I N A L   R E S E A R C H   A R T I C L E

with smshapes, they also show some limits for registering 
images that were transformed with translation vectors 
with a norm greater than 14.5 voxels before registration. 
The difference between the cascaded and smshapes 
models is statistically significant for translations from 5 to 
16.5 voxels (p < 0.03).

Experiment S3

The computational time was compared between 
three methods (cascaded models, RigSlicereg and 
RigSliceregSyn) for the intra-subject multimodal registra-
tion task. For the cascaded deep-learning models, regis-
tration for 192 × 256 × 320 size images took 78.3 to 82.4 
seconds and for 192  ×  320  ×  320 size images, 97.1 to 
103.4 seconds. The RigSlicereg iterative method, which 
achieved the most accurate registration results among 
the traditional registration methods in Experiments 1 
and 2, is 23.5 to 24.2 (1893 to 1934 seconds) and 21.3 
to 26.3 (2141 to 2554 seconds) slower than the cascaded 
models for the 192 × 256 × 320 and 192 × 320 × 320 size 
images, respectively. Adding a deformable registration 
step with SyN (RigSliceregSyn) increased the compu-
tation time from 256 to 310 seconds, when this step is 
performed on a volume downsampled by a factor of 2, 
or from 2023 to 4101 seconds when no prior downsam-
pling of the 3D image is performed. Therefore, the com-
parison between cascaded deep-learning models and 
a traditional method including deformable registration 
(RigSliceregSyn) computed on a downsampled volume 
shows that deep-learning models register images 23.8 
to 30 times faster on CPUs than a classical registration 
method based on iterative optimization.

Supplementary Discussion

Sub-volumes feature

The ability to perform registration on sub-volumes before 
spatially concatenating the resulting sub-warping fields 
is a critically important feature. This is because the regis-
tration of large 3D images using complex deep-learning 
models requires a large amount of RAM (sometimes over 

32 GB), which can be a limitation for standalone laptops. 
Using sub-volumes significantly reduces the amount of 
RAM required for registration. For example, registering 
a pair of volumes of size 192 × 256 × 320 requires about 
21–22 GB of RAM when registering the entire volume di-
rectly while it is reduced to about 12, 4 and 3 GB of RAM 
using sub-volumes of size 160 × 160 × 192, 80 × 80 × 96 
and 64  ×  64  ×  64, respectively. Therefore, this fea-
ture should be used if computer resources are limited. 
Otherwise, it is recommended to use whole volumes as 
inputs to the models to avoid a potential decrease in 
registration accuracy due to the smoothing effect in the 
overlapping areas of the sub-volumes caused by concat-
enating the sub-warping fields using a weighted average 
of the displacement vectors.

Supplementary Figures and Tables

Figure S1.  Example of unimodal inter-subject registration with spinal cord 
segmentations and their associated Dice score (DSC). DSCs are computed be-
tween the fixed image (white spinal cord segmentation) and the moving or 
registered images (blue and yellow spinal cord segmentations, respectively). 
Before registration (in blue), the DSC is 0.561. This score increases to 0.908 
after registration by the cascaded deep-learning models (in yellow).
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Table S1.  Parameters used to train the deep-learning registration models, using SynthMorph.

Hyperparameter Description Involved in Final value

in_shape
Dimension of label maps produced. Dimension of the images on which the 
model is trained.

Label maps generation 160 × 160 × 192

num_labels Number of different labels in the label maps. Label maps generation 26

num_maps Number produced of different label maps Label maps generation 125

im_scales
Relative resolutions at which noise is sampled in the first step of the label maps 
generation.

Label maps generation [16, 32, 64]

def_scales
Relative resolutions at which noise is sampled to generate warping fields and 
deform the label map.

Label maps generation [8, 16, 32]

def_max_std
Maximum standard deviation for the Gaussian distribution of noise to generate 
warping fields and deform the label map.

Label maps generation 3

same_subj Generate image pairs from the same label map. Label maps generation True

vel_res
Relative resolutions at which noise is sampled to generate warping fields and 
deform the label maps to create an unregistered pair.

Label maps generation
[32, 64] for model 1
16 for model 2

vel_std
Maximum standard deviation for the Gaussian distribution of noise to generate 
warping fields and deform the label maps to create an unregistered pair.

Label maps generation 3

blur_std Maximum blurring standard deviation applied on the grayscale images. Grayscale images generation 1

gamma Gamma augmentation strength (standard deviation). Grayscale images generation 0.25

bias_std Bias field range (standard deviation). Grayscale images generation 0.3

bias_res Bias field relative resolution. Grayscale images generation 40

Epochs Number of training epochs. Training process 2000

batch_size Mini-batch size. Training process 1

train_frac
Fraction of the label maps that are included in the training dataset. The other 
label maps are included in the validation dataset.

Training process 0.8

batch_size_val Mini-batch size for validation dataset. Training process 1

reg_param Regularization weight (lambda). Training process 1

Lr Learning rate. Training process 5 × 10−5

int_steps Number of integration steps. Network architecture 5

int_res Relative resolution of the flow field during vector integration. Network architecture 2

svf_res Relative resolution of the predicted stationary velocity field. Network architecture 2

Enc U-Net number of convolutional filters per encoder block. Network architecture [256, 256, 256, 256]

Dec U-Net number of convolutional filters per decoder block. Network architecture [256, 256, 256, 256, 256, 256]
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Figure S2.  Results of inter-subject multimodal registration at different stages of the registration process. Each row shows a pair of fixed (T1w MRI contrast of one 
subject) and moving images (T2w MRI contrast of a different subject), followed by the transformed moving image after each step. The median Dice score (DSC) was 
obtained from 223 image pairs.

Figure S3.  Accuracy of spinal cord registration (Dice score (DSC)) after the different steps of the inter-subject (multimodal) registration process. Results were ob-
tained on 223 pairs of images.
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Figure S4.  Pairwise difference in Dice score (DSC) (compared with results on the normal dataset) as a function of (A) degree of rotation, (B) scale factor and (C) 
translation vector norm, applied to the moving image before registration. The results are aggregated on bins of (A) 2 degrees, (B) 2% of scaling and (C) 2 voxels, to 
represent the mean and the 95% confidence interval (computed with bootstrapping) of the DSC change as a function of transformation intensity. Results are shown 
in green for the cascaded models and orange for smshapes.


