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ABSTRACT

Bayes factors can be used to provide quantifiable evidence for contrasting hypotheses and have thus become increasingly popular 
in cognitive science. However, Bayes factors are rarely used to statistically assess the results of neuroimaging experiments. Here, 
we provide an empirically driven guide on implementing Bayes factors for time-series neural decoding results. Using real and simu-
lated magnetoencephalography (MEG) data, we examine how parameters such as the shape of the prior and data size affect Bayes 
factors. Additionally, we discuss the benefits Bayes factors bring to analysing multivariate pattern analysis data and show how using 
Bayes factors can be used instead or in addition to traditional frequentist approaches.
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direct comparison of the predictions of two hypothe-
ses is one of the strengths of the Bayesian framework 
of hypothesis testing (11, 12). The goal of this paper 
is to present and discuss Bayes factors from a practi-
cal standpoint in the context of time-series decoding, 
while referring the reader to published work focusing 
on the theoretical and technical background of Bayes 
factors.

The Bayesian approach brings several advantages 
over the traditional NHST framework (13–18). In addition 
to allowing us to contrast evidence for above-chance 
versus at-chance decoding directly, Bayes factors are 
a measure of strength of evidence for one hypothesis 
versus another. That means, we can directly assess how 
much evidence we have for different analyses. For ex-
ample, if we were interested in testing whether viewing 
different colours evokes different neural responses, we 
could examine differences in the neural signal evoked 
by seeing red, green, and yellow objects. Using Bayes 
factors, we could then directly compare whether red ver-
sus green can be decoded as well as red versus yellow. 
Larger Bayes factors reflect more evidence that makes 
the interpretation of statistical results across analyses 

INTRODUCTION

The goal of multivariate decoding in cognitive 
neuroscience is to infer whether information is rep-
resented in the brain (1). To draw meaningful con-
clusions in this information-based framework, we 
need to statistically assess whether the conditions 
of interest evoke different data patterns. In the con-
text of time-resolved neuroimaging data, activation 
patterns are extracted across magnetoencephalog-
raphy (MEG) or electroencephalography (EEG) sen-
sors, and classification accuracies are used to estimate  
information at every timepoint (see Figure 1 for an 
example). Currently, null hypothesis statistical testing 
(NHST) and p-values are the de facto method of choice 
for statistically assessing classification accuracies, but 
recent studies have started using Bayes factors (2–10). 
Bayes factors describe the probability of one hypothe-
sis over the other given the observed data. In the mul-
tivariate pattern analysis (MVPA) context, we use Bayes 
factors to test the probability of above-chance classifi-
cation versus at-chance classification given the decod-
ing results across participants at each timepoint. The 
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more intuitive. Another advantage is that Bayes factors 
can be calculated iteratively while more data are being 
collected and that testing can be stopped when there is 
a sufficient amount of evidence (16, 18). Such stopping 
rules could be accompanied by a pre-specified acquisi-
tion plan and potentially an (informal) pre-registration via 
portals such as the Open Science Framework (19).

Using the data to determine when enough evidence 
has been collected is particularly relevant for neuroim-
aging experiments, as it might significantly reduce re-
search costs and reduce the risk of having underpowered 
studies. Thus, using a Bayesian approach to statistically 
assess time-series classification results can be beneficial 
both from a theoretical as well as an economic stand-
point and might ease the ability to interpret and commu-
nicate scientific findings.

While Bayes factors provide an alternative to the more 
traditional NHST framework, incorporating Bayes factors 
into existing time-series decoding pipelines may seem 
daunting. Introductory papers often focus on mathemat-
ical aspects and on relatively straightforward behavioural 
experiments (e.g., 17, 20, 21). We present an example  
based on a previously published time-series decod-
ing study (22) and will present results from simulations 
to show the influence of certain parameters on Bayes 
factors. We make use of the established Bayes Factor 
R package (23) to calculate the Bayes factors but pro-
vide sample codes along with this paper showing how 
to access the Bayes Factor R package via Matlab and 
Python (https://github.com/LinaTeichmann1/BFF_repo). 
We also show how the Bayes factors in our example 
compare to p-values. Based on empirical evidence, we 

Fig. 1.  Overview of MVPA for time-series neural data.  (A) Example MEG sensors/EEG channels. (B) Simulated time-series neuroimaging data for a few sensors/
channels. Vertical lines show stimulus onsets with example stimuli plotted below. Data are first epoched from −100 ms to 800 ms relative to stimulus onset, resulting in 
multiple time-series chunks associated with seeing a red or a green shape. (C) Using the epoched data, we can extract the sensor/channel activation pattern across the 
different sensors/channels (only 2 displayed for simplicity) for every trial at every timepoint. Then a classifier (black line) is trained to differentiate between the activation 
patterns evoked by red and green trials. The shape of the stimuli is not relevant in this context. (D) Example of a 4-fold cross validation where the classifier is trained on 
three quarters of the data and tested on the left-out quarter. This process is repeated at everytimepoint. (E) We can calculate how often the classifier accurately predicts 
the colour of the stimulus at each timepoint by averaging across all testing folds. Theoretical chance level is 50% as there are two conditions in the simulated data (red 
and green). During the period before stimulus onset, we expect decoding to be at chance, and thus the baseline period can serve as a sanity check.

https://github.com/LinaTeichmann1/BFF_repo
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cluster-corrected p-values were used to assess decoding 
accuracies as implemented in CoSMoMVPA (23). Here, we 
calculated Bayes factors instead and examined how pa-
rameter changes affected the results.

When running statistical tests on classification re-
sults, we are interested in whether decoding accuracy 
is above chance at each timepoint. To test this using a 
frequentist approach, we can use permutation tests to 
establish whether there is enough evidence to reject H₀, 
which states that decoding is equal to chance. If there 
is enough evidence, we can reject H₀ and conclude 
that decoding is different from chance. Given that be-
low-chance decoding accuracies are not meaningful, we 
usually are interested only in above-chance decoding 
(directional hypothesis).

In contrast to the frequentist approach, Bayes factors 
quantify how much the plausibility of two hypotheses 
changes, given the data (see e.g., 20). Here, we ran a 
Bayesian t-test of Bayes Factor R package (24) at each 
timepoint, testing whether the data are more consistent 
with Hₐ (decoding is larger than chance) over H₀ (decod-
ing is equal to chance). The resulting Bayes factors centre 
around 1 with numbers smaller than 1 representing evi-
dence for H₀ and numbers larger than 1 representing evi-
dence for Hₐ. In contrast to p-values, Bayes factors are di-
rectly interpretable and comparable (cf. 16, 17, 25). That 
is, a Bayes factor of 10 means that the data are 10 times 
more likely to be observed under Hₐ as opposed to H₀. 
Similarly, a Bayes factor of 1/10 means that the data are 
10 times more likely to be observed under H₀ as opposed 
to Hₐ. Thus, in the context of time-series decoding, Bayes 
factors allow us to directly assess whether and how much 
evidence there is at a given timepoint for the alternative 
over the null hypothesis and vice versa (Figure 2C).

will give recommendations for Bayesian analysis applied 
to M/EEG classification results. The aim of this paper is 
to provide a broad introduction to Bayes factors from 
a viewpoint of time-series neuroimaging decoding. We 
aim to do so without going into the technical or math-
ematical detail and instead provide pointers to relevant 
literature on the specifics.

METHODS AND RESULTS

Example dataset and inferences based on Bayes 
factors

The aim of the current paper is to show how to use Bayes 
factors when assessing time-series neuroimaging classifi-
cation results and test what effect different analysis param-
eters have on the results. We have used a practical example 
of previously published MEG data (22), which we re-anal-
ysed using Bayes factors. In the original experiment, par-
ticipants viewed coloured shapes and grayscale objects in 
separate blocks while the neural signal was recorded using 
MEG. Here, we only considered the coloured shape trials 
(“real colour blocks”, 1600 trials in total). Identical shapes 
were coloured in red or green and were shown for 100 
ms followed by an inter-stimulus interval of 800–1100 ms. 
The data were epoched from −100 ms to 800 ms (200 Hz 
resolution) relative to stimulus onset and a linear classifier 
was used to differentiate between the neural responses 
evoked by red and green shapes. A 5-fold cross-validation 
was used with the classifier being trained on 80% of the 
data and tested on the remaining 20%. This classification 
analysis resulted in decoding accuracies over time for each 
participant. In the original study, permutation tests and 

Fig. 2.  Decoding results of our practical example dataset with statistical assessments.  (A) Colour decoding over time (black line). The dashed line shows theoretical 
chance decoding (50%). The grey-shaded area represents the standard error across participants. (B) Effect size over time with the cluster-corrected p-values at each 
timepoint printed below in grey. (C) Bayes factors over time for this dataset on a logarithmic scale. Blue, upwards pointing stems indicate evidence for above-chance 
decoding and red, downwards pointing stems show evidence for at-chance decoding at every timepoint. We used a hybrid one-sided model comparing evidence for 
above-chance decoding versus a point-nil at 𝛿 = 0 (no effect). For the alternative hypothesis, we used a half-Cauchy prior with medium width (r = 0.707) covering an inter-
val from 𝛿 = 0.5 to 𝛿 = ∞. The half-Cauchy prior assumes that small effect sizes are more likely than large ones, but the addition of the interval deems very small effects 𝛿 
< 0.5 as irrelevant. During the baseline period (i.e., before stimulus onset), the Bayes factors strongly support the null hypothesis, confirming the sanity check expectation.
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Fig. 3.  The effect of changing the prior range (null interval) on Bayes factors in our example data.  Intervals starting at larger effect sizes led to more timepoints show-
ing conclusive evidence for H₀. This is due to the fact that theoretical and observed chance levels are not the same. The panels on the right show the prior distributions 
with the different null intervals.

Adjusting the prior range to account for observed 
chance decoding

Bayes factors represent the plausibility that the data 
emerged from one hypothesis compared to another. In 
the example dataset, the two hypotheses are that de-
coding is at chance (i.e., H₀, no colour information pres-
ent) or that decoding is above chance (i.e., Hₐ, colour 
information present). To deal with the fact that observed 
chance decoding can be different than the theoretical 
chance level, we can adjust the prior range of the alter-
native hypothesis to allow for small effects under the 
null hypothesis (21). The prior range (called “null inter-
val” in the R package) is defined in standardized effect 
sizes and consists of a lower and upper bound. To in-
corporate the differences between observed and theo-
retical chance level, we can define a range of relevant 
effect sizes for the alternative hypothesis, for example,  
from 𝛿 = 0.5 to 𝛿 = ∞. To determine which values are rea-
sonable as the lower bound of this interval, we changed 
the prior range systematically and examined the effect 
on the resulting Bayes factors (Figure 3). We found that 
smaller lower bounds at 𝛿 = 0 and 𝛿 = 0.2 resulted in 
weaker evidence supporting the null hypothesis than 
ranges starting at 𝛿 = 0.5 and 𝛿 = 0.8.

The range did not have a large effect on timepoints 
with strong evidence for Hₐ. The effect of changing the 
prior range is larger for the null hypothesis than the al-
ternative as chance decoding is not exactly 50% but dis-
tributed around chance. Changing the lower bound of 
the prior range means that the effects that are just larger 
than 𝛿 = 0 can support the null hypothesis. Thus, the re-
sults here demonstrate that we can compensate for the 
differences between theoretical and observed chance 
by adjusting the prior range and effectively considering 
small effect sizes as evidence for the null hypothesis rath-
er than the alternative.

To further examine what a reasonable lower 
bound of the prior range is, we looked at effect 
sizes observed during the baseline window (be-
fore stimulus onset) in a selection of our previous 

studies (2, 26–30). Using the baseline window allows 
us to quantify the difference between theoretical and 
observed chance, as we do not expect any meaningful  
effects before stimulus onset (e.g., stimulus colour is not 
decodable before the stimulus is presented). Thus, the 
baseline period can effectively tell us which effect sizes 
can be expected by chance. Using this method, we es-
timated maximum effect sizes for different analyses in 
each paper (see different bars in Figure 4). Across our 
selection of prior studies, we found an average maxi-
mum effect size of 𝛿 = 0.39 before stimulus onset and an 
average maximum effect size of 𝛿 = 1.91 after stimulus 
onset (Figure 4). This survey shows that effect sizes as 
large as 𝛿 = 0.5 can be observed when no meaningful 
information is in the signal. Thus, this supports the con-
clusions from the example dataset showing that prior 
ranges with a lower bound of 𝛿 = 0.5 may be a sensible 
choice when using Bayes factors to examine time-series 
M/EEG decoding results. 

Changing the prior width to capture different 
effect sizes

Another feature that can be changed in the Bayesian t-test 
is the width of the half-Cauchy distribution (referred to as 
r-value in the Bayes Factor package). Small r-values create 
a narrower, sharply peaking distribution, whereas larger 
values make the distribution wider with a prolonged peak. 
Standard prior widths incorporated in the Bayes Factor R 
package are medium (r = 0.707), wide (r = 1), and ultraw-
ide (r = 1.414). Keeping the prior range consistent ([0.5, 
Inf]) while using the three prior widths implemented into 
the R Bayes Factor package (medium = 0.707; wide = 1; 
ultrawide = 1.414). We found that changing the width of 
the Cauchy prior did not have a pronounced effect on the 
Bayes factors (Figure 5). In our specific example, this is 
probably the case because the effect sizes quickly rose to 
𝛿 > 2 (Figure 2b), which means that the subtle differenc-
es between the different prior widths do not have a sub-
stantial effect on the likelihood of the data arising from 
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Fig. 4.  Estimated maximum effect sizes during baseline and after stimulus onset for prior decoding studies that used visual stimuli.  Using already published data, 
we calculated the maximum effect sizes during the baseline (light blue) and post-stimulus (dark blue) to estimate typical peak effect sizes in visual decoding studies. 
Each bar represents a unique analysis within the paper. The estimations show that a reasonable range for Hₐ would start at 𝛿 = 0.5 or above, as during baseline decoding 
accuracies corresponding to standardized effect sizes as high as 𝛿 = 0.5 were observed.

Hₐ over H₀. Thus, using the default prior width (r = 0.707) 
for the decoding context seems like a reasonable choice.

The effect of data size on statistical inferences

In a lot of cases, there are financial and time limits on how 
many participants can be tested and for how long. To ob-
tain an estimate of how much data are needed to draw 
conclusions and avoid ending up with underpowered stud-
ies, we used the example dataset and reduced the data 
size for analysis. As classification analyses are usually run 
at the subject level but statistical assessment is run at the 
group level, we tested how changing data size both by trial 
numbers and participant numbers influences Bayes factors 
in the time-series decoding context (Figure 6). In the origi-
nal example dataset, the classifier was trained on 1408 trials 
and tested on 352 trials (5-fold cross-validation). There were 
five different shapes in the red and the green condition (160 
repetitions for each coloured shape), and the cross-valida-
tion schema was based on leaving all trials of one shape 
out for testing. Statistical inferences were drawn on the 
group level that contained data from 18 participants. To ex-
amine the effect of data size (and effectively noise level) on 
the Bayes factor calculations, we re-ran the analysis reduc-
ing the data size first by retaining the first 1200 (75%), 800 
(50%), 400 (25%), or 160 (10%) trials participants completed. 
We cross-validated in the same way as in the original paper, 

with the only difference being how many trials of each 
shape were included. In addition, we subsampled from 
the whole group, retaining data from the first 6, 12, or all 
18 participants and re-ran the statistical analysis. We then 
compared the results from the reduced-size colour data-
sets using Bayes factors and cluster-corrected p-values.1 

Overall, our analyses highlight that we need to have a 
large enough number of trials and a large enough num-
ber of participants to draw firm conclusions about our 
time-resolved decoding results. Testing more participants 
resulted in stronger evidence for Hₐ and H₀, with fewer 
timepoints in the inconclusive range (Bayes factors) and 
more significant above-chance decoding timepoints 
(p-values). Similarly, running the classification with more 
trials, led to more timepoints with large Bayes factors sup-
porting Hₐ and more above-chance decoding timepoints. 
However, one of the key advantages of using Bayes fac-
tors instead of p-values is that we can potentially obtain 
a good idea of how many trials are needed even if we 
run a pilot experiment with a limited number of partici-
pants. A reasonable strategy would be to overpower the 
subject-level data (i.e., number of trials) for the pilot sam-
ple and then sub-sample to explore how many trials are 
needed. In our example, we can see that the amount of 
evidence for Hₐ at peak decoding is not sufficient when 
we only use 160 trials (10% of the original sample), regard-
less of the number of subjects. Increasing the trials to 400 
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Fig. 5.  Bayes factors over time for the example dataset when the prior width is changed.  The width of the prior had no pronounced effect on the Bayes factors we 
calculated. The panels on the right show the prior distributions with the different widths.

Fig. 6.  Results of the colour MEG decoding study, using a limited number of trials and participant data to simulate a piloting scenario.  (A) The first three plots show 
Bayes factors over time along with cluster-corrected p-values. The colour in all plots reflects the number of trials used to train and test the classifier. (B) Compares Bayes 
factors at peak decoding (125 ms) for the different data sizes. (C) Compares how many participants would have needed to be tested given the different number of trials 
with an example pre-defined stopping point. For example, with 1600 trials and >9 participants, 80% of the Bayes factors (at different timepoints) exceeded 6 or 1/6. With 
fewer trials, more participants are needed to reach this example stopping point.

or 800 (25% or 50% of the original sample) leads to similar 
conclusions as using all 1600 trials. As Bayesian statistics 
allow for sequential sampling, we could collect data from 
more participants until a criterion is reached. For example, 
if we had pre-defined a stopping criterion as 80% of the 
timepoints being in the conclusive range (Bayes factors 
>6 or <1/6), we would have been able to stop collecting 
data after 9 participants completed 1600 trials or after 18 

participants completed 400 (Figure 6c). Overall, the data 
suggest that insufficient data at the subject-level ultimate-
ly leads to inconclusive evidence, highlighting that a large 
number of trials is just as, if not more important, than large 
numbers of participants. 

The example dataset provides insight into the effect of 
parameters such as data size and prior shape on Bayes 
factors. However, it is possible that different studies find 

1 In comparison to the original paper, we did not use trial label permutations. Instead, we performed sign-flip permutations (which reduces the computational time) as 
implemented in CoSMoMVPA to generate the null distribution.
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small sample size if the true effect is very small. In con-
trast, if the effect size fell in between the specified ranges 
for the prior of Hₐ and H₀ (i.e., between 0 and 0.5), we 
found that small sample sizes tended to result in incon-
clusive Bayes factors neither supporting Hₐ or H₀.

However, if the sample size increased, the confidence 
that these effects were “real” also increased and there-
fore resulted in stronger confidence supporting one of 
the hypotheses. Importantly, however, large sample sizes 
did not automatically lead to an interpretable Bayes 
Factor if the effect was truly in between the specified 
prior ranges of Hₐ and H₀, indicating that sample size 
had no effect on Bayes factors in this case.

Consistent with our results for the example data, the 
simulations also showed that changing the range of the 
prior has a strong effect on finding substantial evidence 

different effect sizes. We simulated larger datasets with 
fixed effect sizes between 𝛿 = 0 and 𝛿 = 1 to examine 
the interaction of sample size with different prior rang-
es for different effect sizes (Figure 7). We simulated 1000 
datasets with specific effect sizes for each sample size and 
calculated the Bayes factors. We then calculated the me-
dian Bayes factor for each sample- and effect size combi-
nation to show how prior range choices interact with the 
possibility of finding evidence for effects of different sizes. 
Specifically, we compared a prior range of 0.5 to infinity 
(Figure 7A) to a prior range of zero to infinity (Figure 7B).

When specifying the prior range to 0.5 to infinity 
(Figure 7A), our results show that small sample sizes are 
sufficient to draw solid conclusions when the effect sizes 
are near the extremes. For example, the simulations 
showed that there is substantial evidence for H₀ from a 

Fig. 7.  Simulated data varying effect sizes and numbers of participants highlight the rationale for using an interval.  We performed 1000 simulations to demonstrate 
how the Bayes factors behave with different sample sizes given different effect sizes. A shows Bayes factors obtained by using a half-Cauchy prior with an interval [0.5 Inf]. 
B shows Bayes factors obtained by using a half-Cauchy prior without an interval. The first and third rows show the median Bayes factors of 1000 simulations as a function 
of the number of participants. The second and fourth rows show the distribution of the Bayes factors from 1000 simulations using 30 participants (left panels) and 100 
participants (right panels). The distributions of the Bayes factors highlight the rationale for using an interval, as without an interval it is nearly impossible to find substantial 
evidence for the null hypothesis even when the effect size equals zero.
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time-periods without any information in the neural signal 
(e.g., “X happens before Y” versus “Y happens before 
X”). Thus, depending on the research question it may 
be clear which statistical approach suits the time-series 
decoding analysis best. Otherwise, as overall conclusions 
do not differ, Bayes factors and p-values can be used in a 
complementary way to provide quantifiable evidence for 
and against the tested hypotheses as well as definitive 
decisions (see also 18, 31, 32).

Through our results, we provide an empirical, straight-
forward guide to help implement Bayes factors and 
demonstrate the extent of practical benefits when using 
Bayes factors for time-series neural decoding. Using 
a data-driven approach, we showed which analysis pa-
rameters are most suitable for statistical assessment of 
time-series decoding data with Bayes factors. While the 
Bayes factors in our example MEG decoding dataset 
were robust against changes in the pre-defined width 
of the prior, defining the prior range so that there is a 
gap between Ha and H₀ was critical for finding evidence 
for the H₀. This strong effect of the prior range on the 
resulting Bayes factors is particularly relevant in the de-
coding context, as classification accuracies under the 
null are not symmetrically distributed around chance 
(cf. 33). Thus, a gap between H₀ and the lower bound  
of Hₐ ensures that small above-chance classification ac-
curacies are not treated as evidence for Hₐ. Furthermore, 
we systematically varied dataset size and showed that 
using Bayes factors for time-series decoding data is par-
ticularly beneficial when there is limited, noisy data such 
as in a piloting scenario, as quantifiable evidence for 
one hypothesis over another gives a stronger sense of 
whether it is worth pursuing the research question with 
the piloted design, or make changes (e.g., modify trial 
numbers or add/remove conditions). Finally, Bayes fac-
tors can be calculated sequentially while evidence accu-
mulation is monitored to stop once a criterion is reached 
(13, 34), which can save resources and avoid underpow-
ered studies (18). One possibility is to define a stopping 
criterion in terms of a percentage of timepoints where 
evidence is in the conclusive range of Bayes factors (e.g., 
80% of Bayes factors are above 6 or below 1/6). As longer 
baselines can artificially increase the percentage of con-
clusive timepoints, only timepoints after stimulus onset 
should be considered or the duration of the baseline 
period should be pre-defined. As researchers general-
ly do not have unlimited resources, it is possible to also 
pre-register an upper limit for the sample size (e.g., max-
imum 50 participants).

An open question is to what extent our parameter 
choices generalize to different paradigms, analysis ap-
proaches, and modalities. The Bayes factor parameters 
used here were optimized for time-series decoding. It is 
in principle possible to use Bayes factors in a similar way 
to analyse other time-series data such as event-related 
potentials, oscillations, or regressions; however, the Bayes 
factor parameters might have to be adjusted. Similarly, 

for H₀. If the prior range for the alternative is specified to 
start at zero (Figure 7B), it was almost impossible to find 
any evidence for H₀, even if the effect size was truly zero. 
Thus, the simulations show that defining the prior range 
with a gap between effects expected under H₀ and Hₐ is 
critical and that more data lead to larger Bayes factors, 
but only if there is a true underlying effect.

DISCUSSION

Bayes factors have seen a recent increase in popularity in 
cognitive science, as they can be used to provide quan-
tifiable evidence for contrasting hypotheses. However, 
their uptake has to date been slow for neuroimaging ex-
periments. To facilitate their adoption, we have provided 
an empirically driven guide on implementing Bayes fac-
tors for time-series neuroimaging decoding, using both 
real and simulated data. We showed that using Bayes fac-
tors and cluster-corrected p-values lead to similar results 
when statistically assessing time-series neuroimaging 
decoding results. However, the key advantages of using 
Bayes factors are the ability to compare evidence for Hₐ 
with evidence for H₀ and having results that are quan-
tifiable (e.g., 14, 25). Our results show that for time-se-
ries decoding data, half-Cauchy priors with default width 
and an interval ranging from effect sizes of 0.5 to infinity 
provide sensible results. We also show that even a small 
number of participants can yield informative Bayes fac-
tors, which can be useful for making decisions on exper-
imental design parameters (e.g., number of trials) during 
piloting stages of a study.

Our results showed that the overall conclusions de-
rived from Bayes factors and p-values were quite similar, 
highlighting that theoretical considerations should be the 
deciding factor when choosing a statistical approach to 
analyse neural time-series data. In the decoding context, 
p-values afford a dichotomous decision of whether there 
is enough evidence to reject the hypothesis that decod-
ing is at chance at a given timepoint. Rejecting the null 
hypothesis is decoupled from any prior beliefs or theories 
(13) and is linked to an accepted overall error rate such 
as α = 0.05. p-Values allow us to test for the presence 
of an effect at a given timepoint using widely accepted 
thresholds for evidence. While Bayes factors can in prin-
ciple also be thresholded to draw dichotomous conclu-
sions, one of the added benefits of Bayes factors over 
p-values is the ability to quantify the evidence. Another 
useful benefit of using Bayes factors to analyse time-se-
ries decoding data is that Bayes factors allow us to accrue 
evidence for above-chance as well as at-chance decod-
ing. For time-series analyses in particular, this is a useful 
feature as the time period prior to stimulus onset can be 
considered as a control period where we would expect 
evidence for the null hypothesis. Testing both hypotheses 
simultaneously can also be a beneficial feature when the 
research question involves hypotheses predicting certain 
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the analysis pipeline discussed here could be extended 
to other neural decoding modalities such as fMRI (see 
e.g., 28). Pilot data or analyses of previous data can be 
used to examine how parameters have to be modified in 
order to get sensible results. 

A final consideration is the multiple comparisons prob-
lem arising from statistically testing many timepoints. 
When using Bayes factors, as long as the evidence 
for each hypothesis is interpreted at face value (and not 
thresholded for “significance”), we do not need to con-
trol for multiple comparisons (13, 15, 35). That is because 
once we have established a prior and collected the data, 
we examine how much we have to adjust our prior be-
liefs given the data and compare the adjustment 
required for both hypotheses. This idea is not relat-
ed to overall error rates and thus does not change if 
we sample data sequentially or run multiple tests (15). If a 
research question strongly depends on a dichotomous 
decision on multiple tests, then we advise to report cor-
rected p-values (for which correction methods are well 
established) alongside the Bayes factors.

In conclusion, we have provided an empirically driv-
en guide on how to use and interpret Bayes factors for 
time-series neuroimaging decoding data. We show 
that Bayes factors bring several advantages to inter-
preting time-series decoding results such as quantifiable 
evidence and an ability to compare evidence for above-
chance with evidence for at-chance decoding. We hope 
this guide and the accompanying example code (https://
github.com/LinaTeichmann1/BFF_repo) can serve as a 
starting point to incorporate Bayesian statistics to exist-
ing analysis pipelines.
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	 35.	 S’wiątkowski, W., & Carrier, A. (2020). There is nothing magical about 
Bayesian Statistics: An introduction to epistemic probabilities in data anal-
ysis for psychology starters. Basic and Applied Social Psychology, 42(6), 
387–412. https://doi.org/10.1080/01973533.2020.1792297

	 31.	 Lakens, D., McLatchie, N., Isager, P. M., Scheel, A. M., & Dienes, Z. (2020). 
Improving inferences about null effects with Bayes factors and equivalence 
tests. The Journals of Gerontology: Series B, 75(1), 45–57. https://doi.org 
/10.1093/geronb/gby065

	 32.	 van Dongen, N. N., van Doorn, J. B., Gronau, Q. F., van Ravenzwaaij, D., 
Hoekstra, R., Haucke, M. N., Lakens, D., Hennig, C., Morey, R. D., & Homer, 
S. (2019). Multiple perspectives on inference for two simple statistical sce-
narios. The American Statistician, 73(supp 1), 328–339. https://doi.org/10.1
080/00031305.2019.1565553

	 33.	 Allefeld, C., Görgen, K., & Haynes, J.-D. (2016). Valid population infer-
ence for information-based imaging: From the second-level t-test to 

https://doi.org/10.1016/j.neuroimage.2016.07.040
https://doi.org/10.1016/j.neuroimage.2016.07.040
https://doi.org/10.51628/001c.19129
https://doi.org/10.1080/01973533.2020.1792297
https://doi.org/10.1093/geronb/gby065
https://doi.org/10.1093/geronb/gby065
https://doi.org/10.1080/00031305.2019.1565553
https://doi.org/10.1080/00031305.2019.1565553

