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ABSTRACT

Quality control of morphometric neuroimaging data is essential to improve reproducibility. Owing to the complexity of neuroimag-
ing data and subsequently the interpretation of their results, visual inspection by trained raters is the most reliable way to perform 
quality control. Here, we present a protocol for visual quality control of the anatomical accuracy of FreeSurfer parcellations, based 
on an easy-to-use open-source tool called VisualQC. We comprehensively evaluate its utility in terms of error detection rate and 
inter-rater reliability on two large multi-site datasets and discuss site differences in error patterns. This evaluation shows that Visu-
alQC is a practically viable protocol for community adoption.

INTRODUCTION

Morphometric analysis is central to much of neuroimag-
ing research, as a structural T1-weighted magnetic res-
onance imaging (sMRI) scan is almost always acquired 
in all neuroimaging studies for a variety of reasons. The 
sMRI scans are used in a number of important ways in-
cluding as a reference volume for multimodal alignment, 
delineating anatomical regions of interest (ROIs), and 
deriving a number of imaging markers such as volumet-
ric, shape, and topological properties. FreeSurfer (FS) is 
a popular software package for fully automated process-
ing of structural T1-weighted MRI (T1w-MRI) scans, often 
to produce a whole-brain cortical reconstruction of the 
human brain, including the aforementioned outputs (1). 

Hence, rigorous quality control (QC) of FS outputs is cru-
cial to ensure the quality and to improve the reproduc-
ibility of subsequent neuroimaging research results.

FS processing is often completed without any issues 
when the properties of input sMRI scans are favorable 
for automatic processing. The ideal characteristics of the 
input sMRI scans include, but are not limited to, strong 
tissue contrast, high signal-to-noise ratio (SNR), absence 
of intensity inhomogeneities, absence of imaging arti-
facts (e.g., due to motion and other challenges during 
acquisition), and lack of pathology-related confounds. In 
the absence of one or more of such ideal characteristics, 
which is often the case in large multi-site neuroimaging 
studies, and owing to the challenging nature of the fully 
automatic whole-brain reconstruction, FS processing 
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leads to errors in parcellation. Failure to identify and/or 
correct such errors could result in inaccurate and irrepro-
ducible results. Hence, robust FS QC is crucial.

Research into developing assistive tools and protocols 
for the QC of morphological data can be roughly divided 
into the following categories:

•	 visual protocols for rating the quality of the sMRI scan 
as a whole (2,3). These protocols are helpful as QC of 
input sMRI is required at the MRI acquisition stage 
(e.g., to increase sample sizes) as well as at the sub-
sequent archival and sharing stages (to improve the 
quality and reproducibility of analyses)

•	 assistive tools (manual as well as automatic) to expe-
dite the algorithms for automated assessment of the 
sMRI quality (4–12). Some of these tools may employ 
image quality metrics (IQMs) (13), or metrics from de-
rived outputs produced by FS and related tools, to aid 
in the prediction of scan quality. The IQMs can be ex-
tracted directly from the scan itself (e.g., properties of 
intensity distributions) or be based on one or more of 
the FS outputs (e.g., Euler number and volumetric and 
thickness estimates)

•	 image processing algorithms to detect imaging arti-
facts such as motion and ghosting (14–16).

However, much of the previous research has been lim-
ited to rating the quality of input sMRI scan but not the 
quality of subsequently derived outputs such as FS par-
cellation. The FS team provides a troubleshooting guide 
(TSG) (17), that is, a series of visual checks and manual 
edits for a diverse set of outputs it produces. While this 
guide is comprehensive, it is quite laborious to perform 
even for a single subject, presents a steep learning curve 
to typical neuroimaging researchers, and is simply in-
feasible to employ on the large datasets that are com-
monplace today. Hence, assistive tools and protocols to 
expedite or automate this tedious FS QC process are 
essential. There has been a notable effort in develop-
ing protocols (18) as well as assistive tools (10,11) for the 
QC of FS outputs. While the mindcontrol webapp (10) 
is more accessible (being browser based) and provides 
easy navigation through the dataset, the overall QC 
process is no different from the FS’s recommended TSG 
(which employs tkmedit and slice-by-slice review) and 
hence is still slow and labor intensive. While operating 
in the cloud using a browser interface may present some 
benefits of accessibility, the complicated initial setup 
creates an additional barrier for non-expert users (large 
amounts of costly cloud storage space), issues related to 
privacy and anonymization (transferring imaging data to 
the cloud), as well as creating a major dependency on 
the cloud makes it unreliable and/or slow. Moreover, it 
does not present the important visualizations for the pial 
surface (see Figure 1, Panel B), which are necessary to 
identify any topological defects.

In another related effort to reduce the QC burden as 
well as rater subjectivity, Klapwijk et al. (11) developed 

a statistical model to automatically predict a compos-
ite quality rating based on a combination of proper-
ties of input T1w MRI scan (presence of motion) and a 
few checks on the FS outputs. Their predictive model 
demonstrated very good performance (>80% accuracy; 
varying depending on evaluation setup) in discriminating 
“Failed scans” from the rest (rated as Excellent, Good, or 
Doubtful). However, the rater agreement in this manual 
QC protocol was as low as 7.5%, that is, only six subjects 
out of 80 had ratings with a complete agreement among 
the five raters, increasing to >85% when the majority rat-
ing is used to evaluate the agreement. This may likely 
be due to the composite rating used (based on both 
input T1w MRI scan and FS outputs), which confounds 
the ratings, making it harder to disambiguate the source 
of bad quality (input vs. output), and hence making it a 
non-ideal comparison target. Moreover, their extensive 
analyses clearly highlight an important need for reliable 
and accurate ratings with high inter-rater reliability (IRR).

Aiming to deliver a quick method to QC FS outputs 
from multiple large datasets, the Enhancing Neuro 
ImaGing through Meta-Analysis (ENIGMA) consortium 
(19) developed a fast and useful visual rating protocol 
for FS QC (denoted by ENQC) based on a set of batch 
processing scripts, visualizations embedded in html and 
manual ratings collected in a spreadsheet. ENQC is a 
practical approach to greatly expedite an otherwise te-
dious process by selecting four volumetric slices for in-
spection. While drastically reducing the amount of work 
for the rater, this also greatly increases the likelihood of 
missing subtle errors, as they may fall between or out-
side the limited number of views. Moreover, having to 
deal with multiple disparate tools without clear integra-
tion (spreadsheets, shell scripts, html, etc.) leads to much 
higher human error (in maintaining integrity across mul-
tiple spreadsheets with complex identifiers), especially in 
large datasets.

To address the complexity and limitations of the var-
ious tools we mentioned so far (including ENQC) and 
the need for more reliable and accurate QC ratings, we 
developed VisualQC (4), a new open-source QC rating 
framework, designed to ease the burden involving any 
visual QC tasks in neuroimaging research. The tool to 
rate the quality of FS parcellations is one of the many 
within VisualQC, which are built on a generic visual rat-
ing framework that is modular and extensible, allowing 
for manual/visual QC of virtually any digital medical data. 
Other tools within VisualQC include quality rating and ar-
tifact identification within T1w MRI, Echo Planar Imaging 
(EPI), and Diffusion Tensor Imaging (DTI) scans, as well as 
tools to easily check the accuracy of registration, defac-
ing, and volumetric segmentation algorithms. VisualQC’s 
custom-designed rating interface for FS parcellation pro-
vides a seamless workflow, integrating all the necessary 
data and visualizations to achieve a high rating accuracy.

Based on a systematic study of two large multi-site 
datasets, from the Ontario Brain Institute (OBI): the 
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Canadian Biomarker Integration Network in Depression 
(CAN-BIND) and the Ontario Neurodegeneration 
Research Initiative (ONDRI) programs, we show that the 
VisualQC protocol leads to a higher and more reliable 
error detection rate (EDR) than ENQC. As visual inspec-
tion is a subjective process, it is prone to bias or varia-
tion in a rater’s judgment and interpretation, especially in 
the case of subtle errors and those within tricky regions 
(with convoluted contours on 2D cross-sectional slices) 
such as entorhinal cortex (EC), parahippocampal gyrus, 
and superior temporal sulcus. Hence, we also quantify 
the IRR for each combination of the dataset, for the two 
protocols ENQC and VisualQC. Our goal in choosing 
these two datasets is to evaluate the protocols on a di-
verse range of participants. In addition, we also chose to 
evaluate the QC protocols for two different versions of 
FS: v5.3 and v6.0, as the parcellation accuracy and error 
patterns differ for different versions, and these two have 
been in use widely. These combinations would expose 
our study to a diverse range of issues, as well as test the 
reproducibility and robustness of the protocol to differ-
ing datasets and software versions. Given the multi-site 
nature of these datasets, we also investigated site-wise 
differences in error patterns of FS cortical parcellations. 
In particular, we built a predictive model of the site to 
identify the factors influencing site-wise differences in FS 
error patterns. Based on this comprehensive evaluation, 
we show that VisualQC outperforms ENQC for FS QC, 
becoming a strong candidate for a community consen-
sus protocol for the visual QC rating of FS parcellations.

METHODS

Datasets

We analyzed two large multi-site datasets that were 
drawn from previous studies: (i) the CAN-BIND with 308 
participants (20,21) and (ii) the Parkinson’s disease co-
hort from the ONDRI (22,23), with 140 participants. The 
demographics of the two datasets are shown in Table 1. 
More detailed information on site differences, in terms of 
vendors, models, and acquisition parameter information, 
is presented in Appendix A.

Processing

All scans in the two datasets were processed with the FS 
cross-sectional pipeline (1), to obtain the default whole-
brain reconstruction with no special flags. No manual ed-
iting was performed on the output parcellation from FS, 
to focus the analysis purely on fully automatic process-
ing. Each dataset was processed with two widely used 
versions of 5.3 and 6.0, on a CentOS 6 Linux operating 
system in a Compute Canada high-performance com-
puting cluster.

Rating methodology

The primary purpose of FS QC via manual visual rating 
is to identify parcellation errors and rate their level, for 
example, as Pass, Major error, Minor error, [complete] 
Fail, etc. An error in FS cortical parcellation occurs when 
the pial or white surface does not follow their respective 
tissue-class boundaries, such as gray matter (GM) and 
white matter (WM), respectively.

Initially, error inspection was completed by three raters, 
following protocols from ENQC. Briefly, ENQC rates the 
quality of the parcellation based on two types of visual-
izations: (i) Internal QC: four cross-sectional slices in cor-
onal and axial views overlaying the labels voxel-wise on 
top of the input T1w MRI in opaque color (see Figure 1), 
and (ii) External QC: four views of the anatomical region-
al labels visualized on the fsaverage surface.1 If there are 
no issues of any kind in the internal or external QC, it is 
rated as Pass in that corresponding section. Parcellation 
errors localized to particular regions are labeled as 
Moderate, whereas the presence of severe errors, large 
mislabeling, misregistration, and imaging artifacts as 
well as global failures would be rated as Fail. Location 
of the error, in terms of left (L) or right (R) hemispheres as 
well as the particular ROI, is also noted, following the FS 
Color Lookup Table (FSCLUT) [link].

The FS QC interface for VisualQC is shown in Figure 
2. This is highly customized for rating the accuracy of FS 
parcellation and presents a comprehensive picture in all 
the relevant views: contours of pial and white surfaces in 
all three cross-sectional views with at least 12 slices per 
view (default is two rows of six slices, but it is customiz-
able), along with six views of the pial surface (in the top 
row). The cortical labels in both the cross-sectional and 
surface views are color annotated in the same manner 
as the FS’s tksurfer tool to leverage the familiarity of the 
default color scheme. This design, while rigorous, still 
allows for rapid review of the quality and bookkeeping 
of the rating along with any other notes. For our three 
raters, compared to ENQC, VisualQC enabled recording 
additional intermediate levels, encoded as Pass, Minor 
Error, Major Error, and [complete] Fail. The locations 
of parcellation errors are also noted in VisualQC using 
the Notes section in the rating interface below the radio 

1   Please refer to the VisualQC manual for illustrations of the two protocols  
at URL: https://github.com/raamana/visualqc/blob/master/docs/VisualQC_ 
TrainingManual_v1p4.pdf

Table 1.  Demographics for the two multi-site datasets in this study.

Dataset N
Male/
Female

Age Group

CAN-BIND 308 110/198 34.45 (12.13)
Healthy controls (n = 111)
Major depressive disorder 
(n = 197)

ONDRI 140 109/31 67.94 (6.35) Parkinson’s disease (n = 140)

All statistics here are displayed in mean (SD) format.

https://github.com/raamana/visualqc/blob/master/docs/VisualQC_TrainingManual_v1p4.pdf
https://github.com/raamana/visualqc/blob/master/docs/VisualQC_TrainingManual_v1p4.pdf
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detailed rating system, along with definitions and exam-
ples for different levels of errors, is presented in Section 
3.4 of the VisualQC manual at github.com/raamana/vi-
sualqc. The direct URL for the current version v1.4 of the 
manual is https://github.com/raamana/visualqc/blob/
master/docs/VisualQC_TrainingManual_v1p4.pdf.

buttons for rating, using the same names and codes as 
in the FSCLUT.

FS parcellation errors can be roughly categorized as 
in Table 2. Their names are self-explanatory, and their 
frequencies for these common errors are estimated 
from the rating data presented in this manuscript. The 

Fig. 1.  Panel (A): Example illustrations of a single slice presented in the ENQC and VisualQC workflows, respectively. The opaque overlay of cortical labels in ENQC 
makes it harder to see the boundaries of white and gray matter and leads to errors in judging the accuracy of pial/white surfaces. Panel (B): Illustration of external surface 
visualizations annotating a typical FS parcellation on the fsaverage surface. These are integrated into the default interface of VisualQC to enable easy detection of any 
topological defects and mislabeling, which is not the case with ENQC creating additional sources of error and burden.

Table 2.  Rough categorization of the common parcellation errors from FreeSurfer, their locations, and frequencies.

Common error Location Severity Frequency

Global fail Large portions of brain missing Fail <1%

Pial overestimate Postcentral, precentral, superior parietal Moderate ~30%

Pial underestimate Temporal pole, superior temporal, inferior temporal Moderate ~35%

ROI misclassification Banks of superior temporal sulcus Moderate ~25%

Pericalcarine, lingual, cuneus Moderate ~25–30%

Insula Minor ~30%

Entorhinal cortex, parahippocampal Minor ~80–100%

Cingulate Minor ~5–10%

github.com
https://github.com/raamana/visualqc/blob/master/docs/VisualQC_TrainingManual_v1p4.pdf
https://github.com/raamana/visualqc/blob/master/docs/VisualQC_TrainingManual_v1p4.pdf
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Exceptions to rating

Accurate parcellation in highly convoluted areas such 
as the EC, parahippocampal gyrus (PH), and insula (IN) 
is highly challenging. Although FS is generally accurate 
in many regions of the cortex in the absence of imag-
ing quality issues, it routinely is erroneous in these ROIs 
(see Figure 3, and quantification below). Minor errors in 
these ROIs are so common, ENQC protocol chose to 
rate them as Pass (ignoring them for the overall quality 
of the whole-brain parcellation), so long as the errors 
are minor and the parcellation is free from any other 
issues. This is in line with the official TSG (17), which 
recommends avoiding editing these minor errors to 
avoid introducing bias and reducing reliability. In the 
VisualQC protocol, we choose to note them as Minor 
Error in the interest of recording the most accurate re-
flection of the parcellation quality. Our data confirm 
that these errors are almost universal: only 4/2688 rat-
ings from three raters (0.1%) were free from errors in 
EC, PH, and IN.

In our statistical analyses comparing error frequencies, 
we have recoded minor errors in EC, PH, and IN with no 
other issues in VisualQC ratings as Pass, to make them 
commensurable with ENQC. A similar approach is taken 
with minor errors (over- and underestimates) in superior 
frontal (SF) (interacting with the cingulate gyrus), superior 
parietal (interacting with cuneus and/or precuneus), su-
pramarginal gyrus (also impacts superior temporal (ST)), 
and middle temporal (MT) gyrus (interacting with inferior 
temporal (IT)).

Error statistics

Error detection rate

EDR for a brain region was calculated as the number of 
participants with detected errors, divided by the total 
number of participants in that dataset. For valid compar-
ison with VisualQC in quantifying EDR, we considered 
a parcellation as Pass in ENQC only when it is rated as 
Pass in both Internal and External evaluations, and as Fail 

Fig. 2.  An instance of the VisualQC interface for the rating of parcellation accuracy of FreeSurfer output. This customized interface presents a comprehensive picture of 
the parcellation in all the relevant views: contours of pial and white surfaces in all three cross-sectional views with 12 slices each, along with six views of the pial surface, 
color annotated with corresponding cortical labels. This design, while rigorous, still allows for rapid review of the quality and bookkeeping of the rating along with any 
other notes.



 : 2022, Volume 2	 - 6 -� CC By 4.0: © Raamana et al.

O R I G I N A L   R E S E A R C H   A R T I C L E

thickness, area, curvature) and contrast-to-noise ratio 
(CNR)2 values in all FS labels.

For site identification, a random forest classifier was 
trained on the aforementioned features to predict the 
site label. We evaluated its performance with neuropre-
dict (26,27) using repeated-holdout cross-validation (80% 
training, repeated 30 times; feature selection based on 
f-value). This analysis is performed to demonstrate the 
presence of large site/scanner differences in tissue con-
trast patterns as they play a key role in FS parcellation ac-
curacy, and the results are included in Appendix E. While 
these results may not directly relate to the central goal of 
this paper, that is, evaluate and compare the visual QC 
protocols for FS, they, however, test our expectation that 
the primary site/scanner-specific differences will be driv-
en by basic CNR effects, and not other derived measures.

Software

All calculations were performed based on the scientific 
Python ecosystem (Python version 3.6), with the Fleiss 
Kappa implementation coming from the statsmodel 
package version 0.10.1 (28).

VisualQC is an open-source QC rating framework 
(4) freely and publicly available at https://github.com/
raamana/visualqc. The tool to rate the quality of FS par-
cellations is one of the many within VisualQC, which are 
built on a generic visual rating framework that is modular 
and extensible, allowing for manual/visual QC of virtually 
any digital medical data. Other tools within VisualQC in-
clude quality rating and artifact identification within T1w 
MRI, EPI, and DTI scans, as well as tools to easily check 
the accuracy of registration, defacing, and volumetric 
segmentation algorithms. They are documented in de-
tail at https://raamana.github.io/visualqc/, which also in-
cludes a comprehensive manual to train the rater to learn 
and use VisualQC3.

RESULTS

Error detection rate

The EDR measured by different raters in the CAN-BIND 
and ONDRI datasets for FS v6 is shown in Figure 3, which 
reveals the following: (i) there are some ROIs that are con-
sistently picked up as erroneous by all raters using both 
QC packages, for example, in the medial temporal lobe 
(MTL), such as the ET, ST, and PH. This is not surprising 
given the challenges involved in producing an accurate 
parcellation in these challenging areas in a fully automatic 

2   CNR is computed as (Mean(WM) − Mean(GM))/sqrt((Var(WM) + Var(GM))), 
where all data used to compute means and variances are intensity values in 
WM/GM
3   URL: https://github.com/raamana/visualqc/blob/master/docs/VisualQC_
TrainingManual_v1p4.pdf

for all other combinations. Under the VisualQC protocol, 
only Pass is considered Pass, and any other rating as Fail. 
This statistic helps us judge which FS version is general-
ly more accurate, and how that performance is related 
to experimental conditions (e.g. site, scanner). EDR was 
calculated separately for each dataset, FS version, and 
rating protocol.

Demographic trends

In addition to the region-, rater-, and site-wise analysis of 
parcellation errors, it may be interesting to understand 
trends in parcellation errors by different subgroups in 
demographics, such as age, gender, and patient diag-
nosis. This would help us identify if there is a pattern in 
errors as well as how the different QC protocols behave 
in different population subgroups. We present this de-
mographic breakdown of error statistics with a series of 
visualizations in Appendix D.

Inter-rater reliability

The ratings were hierarchical in nature as each rating was 
initially approached with a Fail versus Pass mindset, which 
was then followed by dividing the Fail category further 
into multiple levels (Major vs. Minor vs. complete Fail). 
As the interval between the Major versus Minor errors 
and Minor versus Fail can and does differ, they cannot be 
treated as simple numerical variables. Given subjectivity 
in rating error severity – what one rater may perceive as 
minor error could be perceived as major error by anoth-
er reviewer, especially when traversing across the entire 
brain covering diverse ROIs, the ordering of error severi-
ties is not preserved across raters, and hence they cannot 
be treated as ordinal variables either.

Therefore, we encoded them as categorical variables 
to produce valid statistics to respect their properties and 
measurement methods. IRR for ratings was computed 
based on the most native form of ratings possible, such 
as “Pass,” “Major Error,” “Minor Error,” and “Fail” for 
VisualQC. For ENQC, the concatenated ratings from 
Internal and External QC used for IRR calculations are 
“Pass_Pass,” “Pass_Fail,” “Fail_Pass,” and “Fail_Fail.”

We quantified IRR using the Fleiss Kappa statistic on 
ratings from the three raters (24,25), separately for each 
dataset, FS version, and rating protocol. In addition, we 
have also bootstrapped this computation 100 times se-
lecting 80% of the sample for each combination, to ana-
lyze the stability of estimates.

Automatic site identification

Another way to demonstrate the site differences is by 
trying to automatically predict the site based on mor-
phometric features, as they play a direct role in tissue 
contrast and hence FS accuracy. Toward this, we comput-
ed region-wise descriptive statistics (such as mean, SEM, 
kurtosis, skew, and range) on all cortical features (i.e., 

https://github.com/raamana/visualqc
https://github.com/raamana/visualqc
https://raamana.github.io/visualqc
https://github.com/raamana/visualqc/blob/master/docs/VisualQC_TrainingManual_v1p4.pdf
https://github.com/raamana/visualqc/blob/master/docs/VisualQC_TrainingManual_v1p4.pdf
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Demographic trends in error frequency:

Visualization of the error statistics broken down by dif-
ferent regions, raters, and sites, and how they differ rel-
ative to each other are shown in Appendix D (Figures 
D1–D5). Broadly describing the trends in these figures at 
a higher level, we notice the EDR is consistently higher 
for ENQC and it is primarily driven by its high false-posi-
tive rates (FPRs) due to the opaque color overlay ENQC 
employs to show the parcellations the segmentation.  

fashion; (ii) beyond the MTL, we notice variability in EDR 
patterns across the three raters, both between the two 
protocols and even within the same protocol; (iii) There is 
clear variability in EDR per region either across the raters 
within the same protocol or across the protocols for the 
same rater. This is only to be expected given the sub-
jective task across human raters. The regions where this 
variability is large, both across raters and protocols, are 
the hard-to-segment temporal lobe ROIs as well as the 
central sulcus.

Fig. 3.  Visualization showing the differences in EDR across multiple raters for FreeSurfer v6.0 parcellations in the CAN-BIND and ONDRI datasets for ENQC and 
VisualQC protocols. All the visualizations in this paper are annotated with the default Desikan-Killiany parcellation unless otherwise stated. The non-colored areas in gray 
are regions without any parcellation errors or where there is no cortex present (e.g., corpus callosum).
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errors segregated by site, which are presented in Figure 
5 for the CAN-BIND dataset processed with FS v6.0. This 
visualization illustrates the large variability across sites in 
multiple ROIs of the brain across the cortex. This variabil-
ity can also be observed even in the frequently erroneous 
temporal lobe regions.

The corresponding site differences for the ONDRI 
dataset (FS v6.0) are shown in Figure 6. We observe some 
clear patterns common across the sites here, such as the 
relatively higher error rate observed in the medial tem-
poral lobe (MTL) and SF cortex.

Although a higher error rate is expected in MTL, which 
was also observed in the CAN-BIND dataset, a similar 
high error rate in SF is an interesting surprise.

DISCUSSION

In this paper, we visualize the patterns in EDR for two 
different external protocols and evaluate their utility and 
reliability in different dimensions. In the context of FS QC 
broadly speaking, the TSG recommended by the FS team 
is another common occurrence. TSG is a useful prac-
tical guide to not just identify common issues but also 
fix them with specific changes to intermediate outputs 
and with some additional processing. However, it is not a 
quality rating protocol per se, like ENQC or VisualQC, as 
it is a guide toward identifying common errors FS makes 
and how to fix them via manual editing. The approach 
recommended in the TSG boils down to traversing every 
single slice one at a time and checking the parcellation 
accuracy, which although being close to the best one can 
do (gold standard), is quite time consuming and simply 
not feasible for even for somewhat small datasets, let 
alone large datasets. That is the basis for the develop-
ment of protocols like ENQC and VisualQC. As for the 
EDR, following the TSG would result in labeling almost 
all the parcellations as erroneous. Based on our experi-
ence of QCing 1000s of scans from many datasets cover-
ing a gamut of demographics and sites, we are confident 
that the EDR would be 100% when following the TSG 
or any other process requiring inspection of every single 
slice/ROI. EDR would be very close to 100% not just be-
cause FS algorithms have issues but mainly due to the 
immense complexity involved in the whole-brain recon-
struction process in a fully automatic fashion. As noted 
in the Methods sub-section “Exceptions to Rating,” the 
EDR for VisualQC taking all the minor errors identified 
into account, is 99.9% (only four combinations out of 
2688 were free from any errors). To reinforce the point, 
this was based on only looking at the 36 cross sections, 
and if we increased them further, we would very likely 
identify issues in those four combinations as well. This 
implies (i) there were no false positives and (ii) there is no 
loss of quality of rating in employing VisualQC protocol, 
and there are only benefits to be had in terms of efficien-
cy and productivity.

This is routinely observed in the precentral, postcentral, 
and SF regions, which can falsely present an appearance 
of leakage of parcellation into the dura or skull. Such er-
rors do not occur in VisualQC due to its contour overlay 
design and offering the user an option to interactively 
toggle the overlay entirely to better assess the GM/WM 
contrast.

Error comparison

Differences in EDR found between VisualQC and ENQC, 
computed as EDR(VisualQC) − EDR(ENQC) are shown in 
Figure 4, on the default Desikan-Killiany parcellation. We 
observe some interesting patterns in the difference plot. 
The majority of those differences in EDR can be divided 
into two categories:

•	 a higher percentage of errors detected in the temporal 
poles by VisualQC, in slices below that of the lowest 
available view using ENQC, and

•	 a higher percentage of errors detected by ENQC in 
the upper pial surface (superior parietal lobule, SF, 
pre-, and postcentral sulcus), primarily in the CAN-
BIND cohort.

Due to ENQC’s choice of an opaque overlay of seg-
mentation labels onto the anatomical MRI (see Figure 1), 
this increased rate of error detection is likely due to a 
reduction in visibility of the structural scan itself, result-
ing in a higher FPR. Note: we believe errors identified via 
VisualQC are inherently more accurate by virtue of its su-
perior design (much-expanded coverage of the parcella-
tion/brain, non-opaque contour overlay with the ability 
to tweak their transparency levels, including switching 
them off).

Inter-rater reliability

The IRR estimates for different combinations of datasets 
and FS versions are presented in Table 3 for the two pro-
tocols. This shows that VisualQC is more reliable across 
the board. In addition, the bootstrapped estimates (pre-
sented in Appendix B) are quite identical to those shown 
in Table 3. We believe this is due to presenting the rater 
with a vastly more comprehensive view of parcellation, 
the ability to zoom in to each slice as well as toggle the 
tissue contour overlay to evaluate the anatomical accura-
cy in a confident manner.

Site differences

Given FS performance is dependent on the quality of the 
input T1w MRI scan and the underlying tissue contrast, 
we wanted to study if the acquisition site played any 
role in EDR and whether different sites presented differ-
ent error patterns. Hence, we visualized the parcellation 
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Fig. 4.  Percentage differences of error detection found between ENQC and VisualQC, where a negative value (in blue) indicates that ENQC detected a 
greater percentage of errors, whereas a positive value (in red) indicates that VisualQC found a greater percentage of errors, for that dataset and version of 
Freesurfer. The color bars for all panels visualizing the EDR differences range from −0.2 to 0.2. The four panels shown below are as follows: (A) CAN-BIND, 
FS v5.3, (B) CAN-BIND, FS v6.0, (C) ONDRI, FS v5.3, and (D) ONDRI, FS v6.0. Each panel shows lateral/medial views of the EDR map in top/bottom rows, 
respectively.

TABLE 3.  Inter-rater reliability (IRR) estimates for the three raters for different combinations of the dataset 
and FreeSurfer versions.

CAN-BIND v6.0 ONDRI v6.0 CAN-BIND v5.3 ONDRI v5.3

ENQC 0.28 0.215 0.36 0.25

VisualQC 0.64 0.54 0.58 0.56
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we estimate it takes about 20 s for a trained rater in 
VisualQC, whereas it may take a minute or two in ENQC. 
That is reinforced further when we take the ease of initial 
installation and future upgrades into account (one com-
mand for us vs. manual management of many for ENQC). 
That is reinforced further when we take the ease of initial 
installation and future upgrades into account (one com-
mand for us vs. manual management of many for ENQC). 
It must be noted the efficiency/processing times can vary 
based on the type of configuration one may choose for 

In addition to rating accuracy, protocol efficiency is im-
portant given the steadily increasing size of the neuro-
imaging datasets. Relative to VisualQC, ENQC is slower 
and more erroneous because of the need to obtain and 
manage a disparate collection of tools (n > 3: external 
QC, internal QC, separate spreadsheets for note taking, 
outlier prompts, etc.) to rate a single subject, whereas that 
is all fully integrated and seamless in a single VisualQC 
interface. We estimate our interface would be roughly 
at least 3–5 times faster. In the default configurations, 

Fig. 6.  Visualization of the site differences in error ratings (average of the percent errors across the three raters) across different sites for the ONDRI dataset 
(FS v6.0).

Fig. 5.  Visualization of the site differences in error ratings (average of the percent errors across the three raters) across different sites for the CAN-BIND 
dataset (FS v6.0).
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to development of a predictive tool and validate it for 
different application scenarios such as high sensitivity 
(not missing even a single bad parcellation) or more nar-
rowly to clear certain ROIs (posterior cingulate gyrus or 
MTL, etc.) of any errors. Other frequently requested fea-
tures that VisualQC does not currently support, but plan 
to develop in the future, are (i) the ability to correct the 
errors as they are identified on the VisualQC interface, (ii) 
automatic recording of the location(s) of the erroneous 
parcellation, (iii) ability to dig deeper (via zooming in or 
selective highlights) on a single ROI (such as precuneus) 
while switching off everything, and (iv) intelligent slice 
selection or incorporating application-specific domain 
knowledge to improve the speed or accuracy of the visu-
al QC task at hand.

CONCLUSIONS

In this study, we presented a viable protocol for the visu-
al QC of FS parcellations based on an open-source QC 
library. Based on a systematic comparison, we demon-
strate that this VisualQC protocol leads to relatively lower 
FPR and higher IRR for the manual QC of FS parcellation 
relative to ENQC. We characterized its utility and perfor-
mance on two large multi-site datasets showing it is ro-
bust across two different age ranges and disease classes. 
Moreover, it is seamless and is significantly faster than 
following ENQC or the standard FS TSG. Further, we 
highlight the need to be cognizant of the site differences 
in parcellation errors.

VisualQC and goals of the specific QC task (number of 
slices per view, series, and type of checks made, along 
with how thorough the rater is with the notes they make).

While we find the IRR for VisualQC is relatively higher 
than ENQC, we can further improve it in a few ways, for 
example, by reducing the subjectivity in the rating sys-
tem when possible.

Discounting the irreducible human subjectivity, we can 
design the training protocol to be more comprehensive 
to develop consensus on typical disagreements. Another 
possibility could be to increase the number of checkpoints 
to review before rating, but this option comes with the 
tradeoffs of additional burden and slower processing time.

As easy and integrated as VisualQC is, manual QC still 
is not effortless, especially with the increasingly large 
sample sizes reaching many 10s of thousands today. 
Hence, an automated tool to predict the quality of a 
given FS parcellation without human rating would be 
useful in reducing the QC burden. A frequently request-
ed feature is an automatic tool to identify clear failures 
and major errors sufficiently accurately, so the raters can 
focus on the subtle and minor errors, which would expe-
dite the QC process significantly. However, as highlight-
ed by previous efforts in this direction (11), the develop-
ment of accurate automatic predictive QC tools requires 
that we have a reliable approach to create ground truth 
(via visual QC) for these tools to be trained on and opti-
mized for. Development of such a reliable protocol as a 
candidate for community adoption was the main thrust 
of this paper. Based on this protocol, we plan to pursue 
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Appendix A: Site information

The two datasets studied here are large and multi-site by design. The detailed information on site differences in terms 
of acquisition parameters and scanners have been carefully tabulated in the respective dataset papers for ONDRI (23) 
and CAN-BIND (20).

CAN-BIND:

Site
Toronto General/
Western Hospital (TGH)

Centre for Addiction and 
Mental Health (CAM)

McMaster 
University (MCU)

University of 
Calgary (UCA)

University of British 
Columbia (UBC)

Queens 
University (QNS)

Scanner model GE 3T Signa HDxt
GE 3T
Discovery
MR750

GE 3T
Discovery
MR750

GE 3T
Discovery
MR750

Philips 3T Intera
Siemens 3T 
TrioTim

Coil GE 8HRBRAIN GE 8HRBRAIN GE HNS Head GE HNS Head SENSE-Head-8
12-channel head 
matrix coil

Software version
HD16.0_V02_1
131.a

DV24.0_R01_1
344.a

DV25.0_R02_1
549.b

DV25.0_R02_1
549.b

3.2.3,3.2.3.1 syngo MR B19

TR (ms) 7.5 6.4 6.4 6.4 6.57 1760

TE (ms) 2.86 2.8 2.8 2.8 2.9 2.2

TI (ms) 450 450 450 450 950 950

Flip angle (degree) 15 15 15 15 8 15

Pixel bandwidth 260 260 260 260 241 199

Matrix dimension (pixels) 240 × 240 240 × 240 240 × 240 240 × 240 240 × 240 256 × 256

Voxel dimension (mm) 1 × 1 × 1 1 × 1 × 1 1 × 1 × 1 1 × 1 × 1 1 × 1 × 1 1 × 1 × 1

Number of slices
Number of subjects

176
71

180
16

180
50

180
66

180
72

192
31

ONDRI:

Site
Robarts Research 
Institute (ROB)

Sunnybrook Health 
Sciences (SBH)

St. Michael’s 
Hospital (SMH)

The Ottawa 
Hospital (TOH)

Toronto Western 
Hospital (TWH)

Center for Addiction 
and Mental Health 
(CAM)

Scanner Siemens 3T Prisma fit
GE 3T
Discovery MR750

Siemens 3T Skyra
Siemens 3T Trio 
Tim

GE 3T Signa HDxt
GE 3T
Discovery MR750

TR (ms) [2300:2300] [8.156:8.156] [2300:2300] [2300:2300] [6.9:7.3] [6.652:6.652]

TE (ms) [2.98:2.98] [3.18:2.18] [2.03:2.03] [2.96:2.96] [2.8:3.1] [2.298:2.298]

TI (ms) [900:900] [400:400] [900:900] [900:900] [400:400] [400:400]

Flip angle (degree) [9:9] [11:11] [9:9] [9:9] [11:11] [11:11]

Pixel bandwidth [240:240] [244.141:244.141] [240:240] [240:240] [244.141:244.141] [244.141:244.141]

Matrix dimension 
(pixels)

[256 × 256: 256 × 
256]

[256 × 256: 256 × 
256]

[256 × 256: 256 × 
256]

[256 × 256: 256 × 
256]

[256 × 256: 256 × 
256]

[256 × 256: 256 × 256]

Voxel dimension (mm) [1 × 1 × 1:1 × 1 × 1] [1 × 1 × 1:1 × 1 × 1] [1 × 1 × 1:1 × 1 × 1] [1 × 1 × 1:1 × 1 × 1] [1 × 1 × 1:1 × 1 × 1] [1 × 1 × 1:1 × 1 × 1]

Number of slices [176:176] [176:176] [192:192] [176:176] [176:176] [176:176]

Number of subjects 17 29 12 38 30 13
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Appendix B: Bootstrapped results of inter-rater reliability

The bootstrapped estimates (80% of the sample, repeated 100 times) of the IRR for the three raters for different com-
binations of the dataset and FS versions are shown below:

CAN-BIND v6.0 ONDRI v6.0 CAN-BIND v5.3 ONDRI v5.3

ENQC 0.279 (0.02) 0.215 (0.033) 0.361 (0.022) 0.249 (0.026)

VisualQC 0.635 (0.028) 0.539 (0.046) 0.586 (0.03) 0.555 (0.041)



 : 2022, Volume 2	 - 14 -� CC By 4.0: © Raamana et al.

O R I G I N A L   R E S E A R C H   A R T I C L E

Fig. C1.  Distributions of vertex-wise cortical thickness in different ROIs grouped as erroneous or not (and further subdivided by healthy vs. patient). The x-axis refers to 
the thickness values, that are non-negative, with a typical average value of 2.5mm and a typical maximum value of about 5mm. The y-axis refers to the fraction of the ROIs 
at a particular value. The name of the ROI is noted in each panel’s x-axis label along with the number of erroneous subjects in each category.

Appendix C: Distributions of derived  
features in erroneous and accurate ROIs

To help us better understand the differences between er-
roneous and accurate ROIs, we have visualized the distri-
butions of derived features such as the cortical thickness 
between the subjects that were rated as erroneous and 
those that were not, for each FS label separately. They 
are shown in the plot below for the 12 most erroneous 
ROIs from the CAN-BIND dataset processed with FS v6.0. 
Distributions colored with green are from ROIs rated as 
accurate, and those colored with blue and red are from 
the erroneous ROIs from the healthy and disease cohorts, 
respectively. It must be noted that we did not collect the 
exact coordinates of the errors in each FS label and are 
visualizing the distributions of the thickness of the entire 
label from many thousands of vertices in each panel. Such 
massive distribution has the potential to drown any subtle 
differences from the exact location of erroneous vertices.

A clear pattern of errors we can see in these visualiza-
tions (shown below) are the peaks at 0 mm (considered 
erroneous) for the labels entorhinal (Row 1 Col 3), para-
hippocampal (R2:C4), and temporal pole (R3:C4). While 

we do see a green peak (although smaller, from some 
fraction of subjects for the ROIs rated as not-erroneous), 
this is likely coming from slices not reviewed or missed by 
the quality rater and serves as another reminder of how 
complex the review process is and how tedious proper 
QC can be. However, we do notice much larger peaks at 
0 mm for the erroneous groups, which implies we were 
able to catch those errors with our QC protocol. We also 
see a noticeable difference in the shape of the no-error 
versus error distributions in the panel corresponding 
temporal pole (R3:C4).

As noted before, given we are visualizing the distri-
butions of the thickness of the entire label from many 
thousands of vertices, we may be drowning in any subtle 
differences, from the typical parcellation errors we notice 
in FS. When big global segmentation failures do happen, 
it can result in the 0-mm peaks as identified earlier.

As the overlap of distributions is pretty clear, we do not 
think it is necessary for any statistics to show that they 
do not significantly differ from each other. However, we 
included them (along with corresponding versions for 
sulcal depth and curvature), in the revised version for im-
proved readability for the community.
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Fig. C2.  Distributions of vertex-wise sulcal depth in different ROIs rated and grouped as erroneous or not (and further subdivided by healthy vs. patient). The x-axis refers 
to the sulcal depth values, whose range includes negative values, whereas the y-axis refers to the fraction of the ROIs at a particular value. The name of the ROI is noted 
in each panel’s x-axis label along with the number of erroneous subjects in each category.

Fig. C3.  Distributions of vertex-wise curvature in different ROIs grouped as erroneous or not (and further subdivided by healthy vs. patient). The x-axis refers to the 
curvature values, whose range can include negative values, whereas the y-axis refers to the fraction of the ROIs at a particular value. The name of the ROI is noted in each 
panel’s x-axis label along with the number of erroneous subjects in each category.
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Appendix D: Demographic breakdown of error statistics

The breakdown of error frequencies by different common subgroups of demographics is shown below:

Fig. D1.  Breakdown of the error statistics by age group in the CAN-BIND dataset for the two protocols. It is 
evident from this visualization that ENQC consistently produces higher FPR across all age groups.

Fig. D2.  Breakdown of the error statistics in the CAN-BIND dataset by diagnostic group.
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Fig. D3.  Breakdown of the error statistics in the CAN-BIND dataset by participant sex.

Fig. D4.  Breakdown of the error statistics in the ONDRI dataset by age group.
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The corresponding feature importance values (medi-
an values from the 30 repetitions of cross-validation) are 
visualized in Figure E2. It is quite clear from the top 10 
features that CNR played a crucial role in site identifica-
tion, and their source ROIs are in challenging areas such 
as the lateral occipital cortex, fusiform gyrus, cuneus, 
postcentral gyrus, superior parietal cortex, and temporal 
lobe. These site-differentiating ROIs are difficult to iden-
tify just based on raw patterns shown in visualizations 
such as Figure 5.

We have also performed the site differences analysis 
on the ONDRI dataset (FS v6.0) with results shown in 
Figure E3. Similar to CAN-BIND, we can see that a few 
sites are quite identifiable in ONDRI as well, such as TOH 
and TWH with 84% and 71% accuracy. Given the chance 
accuracy in this 5-class experiment is 20%, we can consid-
er the sites LHS and SBH to be identifiable as well. The 
features contributing most to the automatic site identifi-
cation model were sulcal depth in rostral anterior cingu-
late and precentral gyrus, thickness distributional statis-
tics (such as mean, skew, range, and SEM) in paracentral, 
inferior temporal, lingual, and precentral gyri, along with 
precuneus volume (fraction relative to the whole brain). 
It is interesting to note that these features are a different 
set compared to those in CAN-BIND, which were most-
ly based on CNR profiles in different ROIs. Although 
the site-prediction analyses presented here are based 

Appendix E: Automatic site identification

The performance estimates of a predictive model for au-
tomatic site identification on the FS v6 outputs from the 
CAN-BIND dataset are visualized in the confusion matrix 
shown in Figure E1. This shows that some sites, especial-
ly UBC and QNS, are readily identifiable with over 80% 
accuracy. Given the chance accuracy in this 6-class exper-
iment is 16%, sites TGH, MCU, and UCA seem relatively 
easily identifiable as well.

It is rather interesting CAM and MCU have often been 
misclassified (>25%) as UCA, which can also be seen 
in the similarity of site-wise error patterns in Figure 5. 
Moreover, all these three sites use the same scanner 
(GE 3.0T Discovery MR750), which might explain the 
confusion exhibited by the site-predicting classifier. 
However, it must be noted CAM also got misclassified 
as TGH 47% of the time, whereas TGH has never been 
misclassified as CAM (1.39%). Such asymmetric predic-
tion might have been a result of the small sample size 
for CAM (n = 16), which might be causing challenges for 
the predictive model in learning a unique profile for this 
site and/or skew toward the majority classes to improve 
performance. This anomaly is interesting and worthy of 
further future investigation. Please refer to Appendix A 
for more details on the scanner models and acquisition 
parameters.

Fig. D5.  Breakdown of the error statistics in the ONDRI dataset by sex for the two protocols
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Fig. E2.  Feature importance values from the random forest predictive model for site identifi-
cation on CAN-BIND dataset FS v6.0.

Fig. E1.  Confusion matrix from a simple machine learning experiment to identify the site from the morpho-
metric features extracted from FreeSurfer outputs (v6.0) from the CAN-BIND dataset, such as the region-wise 
statistics on all cortical features (thickness, area, curvature) and CNR values in the FS labels. We notice some 
sites, esp. UBC and QNS, are quite identifiable. Given the chance accuracy in this 6-class experiment is 16%, 
sites TGH, MCU, and UCA seem easily identifiable also.
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on derived features, and error patterns across sites are 
based on raw parcellations of WM and GM surfaces, the 
site-prediction results from the two datasets show the 
importance of being cognizant about site differences 
while QCing FS parcellations.
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