
: 2022, Volume 2 - 22 - CC By 4.0: © Smith et al.
O R I G I N A L R E S E A R C H A R T I C L E
70. Raffelt D, Tournier J-D, Rose S, et al. Apparent bre density: A novel mea-
sure for the analysis of diffusion-weighted magnetic resonance images.
NeuroImage. 2012;59(4):3976–3994.
71. Hagmann P, Cammoun L, Gigandet X, et al. Mapping the structural core of
human cerebral cortex. PLoS Biology. 2008;6(7):e159.
72. Sherbondy A, Rowe M, Alexander D. MicroTrack: An algorithm for concur-
rent projectome and microstructure estimation. In: Jiang T, Navab N, Pluim
J, Viergever M, eds. Medical Image Computing and Computer-Assisted
Intervention. Vol 6361. Springer Berlin / Heidelberg; 2010:183–190. https://
link.springer.com/chapter/10.1007/978-3-642-15705-9_23
73. Lemkaddem A, Skiöldebrand D, Dal Palú A, Thiran J-P, Daducci A. Global
tractography with embedded anatomical priors for quantitative connectiv-
ity analysis. Frontiers in Neurology. 2014;5:232.
74. Batalle D, Hughes EJ, Zhang H, et al. Early development of structural net-
works and the impact of prematurity on brain connectivity. NeuroImage.
2017;149:379–392. doi:10.1016/j.neuroimage.2017.01.065
75. McColgan P, Seunarine KK, Razi A, et al. Selective vulnerability of Rich Club
brain regions is an organizational principle of structural connectivity loss in
Huntington’s disease. Brain. 2015;138(11):3327–3344. doi:10.1093/brain/
awv259
76. Proix T, Spiegler A, Schirner M, Rothmeier S, Ritter P, Jirsa VK. How do par-
cellation size and short-range connectivity affect dynamics in large-scale
brain network models? NeuroImage. 2016;142:135–149. doi:10.1016/j.
neuroimage.2016.06.016
77. Mitra J, Shen K, Ghose S, et al. Statistical machine learning to identi-
fy traumatic brain injury (TBI) from structural disconnections of white
matter networks. NeuroImage. 2016;129:247–259. doi:10.1016/j.
neuroimage.2016.01.056
78. McColgan P, Gregory S, Seunarine KK, et al. Brain regions showing white
matter loss in Huntington’s disease are enriched for synaptic and meta-
bolic genes. Biological Psychiatry. 2018;83(5):456–465. doi:10.1016/j.
biopsych.2017.10.019
79. Amico E, Goñi J. Mapping hybrid functional-structural connectivity traits
in the human connectome. Network Neuroscience. 2018;2(3):306–322.
doi:10.1162/netn_a_00049
80. Silk TJ, Genc S, Anderson V, et al. Developmental brain trajectories in chil-
dren with ADHD and controls: A longitudinal neuroimaging study. BMC
Psychiatry. 2016;16(1):59. doi:10.1186/s12888-016-0770-4
81. Blesa M, Sullivan G, Anblagan D, et al. Early breast milk exposure modi-
es brain connectivity in preterm infants. NeuroImage. 2019;184:431–439.
doi:10.1016/j.neuroimage.2018.09.045
82. Takemura H, Pestilli F, Weiner KS, et al. Occipital white matter tracts in
human and macaque. Cerebral Cortex. 2017;27(6):3346–3359. doi:10.1093/
cercor/bhx070
83. Weiner KS, Jonas J, Gomez J, et al. The face-processing network is resil-
ient to focal resection of human visual cortex. Journal of Neuroscience.
2016;36(32):8425–8440. doi:10.1523/JNEUROSCI.4509-15.2016
84. Yeatman JD, Weiner KS, Pestilli F, Rokem A, Mezer A, Wandell BA. The
vertical occipital fasciculus: A century of controversy resolved by in vivo
measurements. Proceedings of the National Academy of Sciences of
the United States of America. 2014;111(48):E5214–E5223. doi:10.1073/
pnas.1418503111
85. Gomez J, Pestilli F, Witthoft N, et al. Functionally dened white matter
reveals segregated pathways in human ventral temporal cortex asso-
ciated with category-specic processing. Neuron. 2015;85(1):216–227.
doi:10.1016/j.neuron.2014.12.027
86. Takemura H, Rokem A, Winawer J, Yeatman JD, Wandell BA, Pestilli F. A
major human white matter pathway between dorsal and ventral visual cor-
tex. Cerebral Cortex. 2016;26(5):2205–2214. doi:10.1093/cercor/bhv064
87. Ajina S, Pestilli F, Rokem A, Kennard C, Bridge H. Human blindsight is me-
diated by an intact geniculo-extrastriate pathway. eLife. 2015;4:e08935.
doi:10.7554/eLife.08935
88. Perge JA, Niven JE, Mugnaini E, Balasubramanian V, Sterling P. Why do
axons differ in caliber? The Journal of Neuroscience: The Official Journal
of the Society for Neuroscience. 2012;32(2):626–638.
89. Drobnjak I, Zhang H, Ianus¸ A, Kaden E, Alexander DC. PGSE, OGSE, and
sensitivity to axon diameter in diffusion MRI: Insight from a simulation
study. Magnetic Resonance in Medicine. 2016;75(2):688–700. doi:10.1002/
mrm.25631
90. Whittall KP, Mackay AL, Graeb DA, Nugent RA, Li DKB, Paty DW. In vivo
measurement of T2 distributions and water contents in normal human
brain. Magnetic Resonance in Medicine. 1997;37(1):34–43. doi:10.1002/
mrm.1910370107
91. Fan Q, Nummenmaa A, Witzel T, et al. Axon diameter index estimation inde-
pendent of ber orientation distribution using high-gradient diffusion MRI.
NeuroImage. 2020;222:117197. doi:10.1016/j.neuroimage.2020.117197
44. Smith RE, Tournier J-D, Calamante F, Connelly A. The effects of SIFT on
the reproducibility and biological accuracy of the structural connectome.
NeuroImage. 2015;104(0):253–265.
45. Savadjiev P, Campbell JSW, Descoteaux M, Deriche R, Pike GB, Siddiqi K.
Labeling of ambiguous subvoxel bre bundle congurations in high angu-
lar resolution diffusion MRI. NeuroImage. 2008;41(1):58–68.
46. Close TG, Tournier J-D, Johnston LA, Calamante F, Mareels I, Connelly A.
Fourier Tract Sampling (FouTS): A framework for improved inference of
white matter tracts from diffusion MRI by explicitly modelling tract volume.
NeuroImage. 2015;120(0):412–427.
47. Daducci A, Dal Palú A, Descoteaux M, Thiran J-P. Microstructure Informed
Tractography: Pitfalls and open challenges. Frontiers in Neuroscience.
2016;10:247.
48. Girard G, Daducci A, Petit L, et al. AxTract: Toward microstructure informed
tractography. Human Brain Mapping. 2017;38(11):5485–5500.
49. Raffelt DA, Smith RE, Ridgway GR, et al. Connectivity-based xel enhance-
ment: Whole-brain statistical analysis of diffusion MRI measures in the
presence of crossing bres. NeuroImage. 2015;117:40–55.
50. Behrens TEJ, Woolrich MW, Jenkinson M, et al. Characterization and
propagation of uncertainty in diffusion-weighted MR imaging. Magnetic
Resonance in Medicine. 2003;50(5):1077–1088.
51. Dell’Acqua F, Rizzo G, Scifo P, Clarke RA, Scotti G, Fazio F. A model-based
deconvolution approach to solve ber crossing in diffusion-weighted MR
imaging. IEEE Transactions on Biomedical Engineering. 2007;54(3):462–
472. doi:10.1109/TBME.2006.888830
52. Alexander DC, Hubbard PL, Hall MG, et al. Orientationally invariant in-
dices of axon diameter and density from diffusion MRI. NeuroImage.
2010;52(4):1374–1389.
53. Assaf Y, Basser PJ. Composite hindered and restricted model of dif-
fusion (CHARMED) MR imaging of the human brain. NeuroImage.
2005;27(1):48–58.
54. Assaf Y, Blumenfeld-Katzir T, Yovel Y, Basser PJ. AxCaliber: A method
for measuring axon diameter distribution from diffusion MRI. Magnetic
Resonance in Medicine. 2008;59(6):1347–1354.
55. Behrens TEJ, Johansen-Berg H, Jbabdi S, Rushworth MFS, Woolrich MW.
Probabilistic diffusion tractography with multiple bre orientations: What
can we gain? NeuroImage. 2007;34(1):144–155.
56. Kaden E, Kelm ND, Carson RP, Does MD, Alexander DC. Multi-compartment
microscopic diffusion imaging. NeuroImage. 2016;139:346–359.
57. Panagiotaki E, Schneider T, Siow B, Hall MG, Lythgoe MF, Alexander DC.
Compartment models of the diffusion MR signal in brain white matter: A
taxonomy and comparison. NeuroImage. 2012;59(3):2241–2254.
58. Zhang H, Schneider T, Wheeler-Kingshott CA, Alexander DC. NODDI:
Practical – in vivo neurite orientation dispersion and density imaging of the
human brain. NeuroImage. 2012;61(4):1000–1016.
59. Tournier J-D, Calamante F, Gadian DG, Connelly A. Direct estimation of
the ber orientation density function from diffusion-weighted MRI data
using spherical deconvolution. NeuroImage. 2004;23(3):1176–1185.
60. Jeurissen B, Tournier J-D, Dhollander T, Connelly A, Sijbers J. Multi-tissue
constrained spherical deconvolution for improved analysis of multi-shell
diffusion MRI data. NeuroImage. 2014;103(0):411–426.
61. Desikan RS, Ségonne F, Fischl B, et al. An automated labeling system for
subdividing the human cerebral cortex on MRI scans into gyral based re-
gions of interest. NeuroImage. 2006;31(3):968–980.
62. Fischl B. FreeSurfer. Neuroimage. 2012;62(2):774–781.
63. Calamante F, Tournier J-D, Jackson GD, Connelly A. Track-density imaging
(TDI): Super-resolution white matter imaging using whole-brain track-den-
sity mapping. NeuroImage. 2010;53(4):1233–1243.
64. Stadlbauer A, Buchfelder M, Salomonowitz E, Ganslandt O. Fiber den-
sity mapping of gliomas: Histopathologic evaluation of a diffusion-ten-
sor imaging data processing method. Radiology. 2010;257(3):846–853.
doi:10.1148/radiol.10100343
65. Bozzali M, Parker GJM, Serra L, et al. Anatomical connectivity mapping: A
new tool to assess brain disconnection in Alzheimer’s disease. NeuroImage.
2011;54(3):2045–2051.
66. Maier-Hein KH, Neher PF, Houde J-C, et al. The challenge of map-
ping the human connectome based on diffusion tractography. Nature
Communications. 2017;8(1):1349.
67. Basser PJ, Pierpaoli C. Microstructural and physiological features of tis-
sues elucidated by quantitative-diffusion-tensor MRI. Journal of Magnetic
Resonance, Series B. 1996;111(3):209–219. doi:10.1006/jmrb.1996.0086
68. Basser PJ, Mattiello J, Lebihan D. MR diffusion tensor spectroscopy and
imaging. Biophysical Journal. 1994;66:259–267.
69. Raffelt DA, Tournier J-D, Smith RE, et al. Investigating white matter
bre density and morphology using xel-based analysis. NeuroImage.
2017;144:58–73.