
: 2021, Volume 1 - 7 - CC-BY: © Padova et al.
R E S E A R C H A R T I C L E
16. Leong ATL, Gu Y, Chan YS, Zheng H, Dong CM, Chan RW, etal. Optogenetic
fMRI interrogation of brain-wide central vestibular pathways. Proceedings
of the National Academy of Sciences USA 2019;116(20):10122–29.
17. Stiles L, Smith PF. The vestibular–basal ganglia connection: balancing
motor control. Brain Research 2015;1597:180–88.
18. Fasold O, von Brevern M, Kuhberg M, Ploner CJ, Villringer A, Lempert T,
etal. Human vestibular cortex as identi ed with caloric stimulation in func-
tional magnetic resonance imaging. Neuroimage 2002;17(3):1384–93.
19. Dieterich M, Bense S, Lutz S, Drzezga A, Stephan T, Bartenstein P, et al.
Dominance for vestibular cortical function in the non-dominant hemisphere.
Cerebral Cortex 2003;13(9):994–1007.
20. Brandt T, Schautzer F, Hamilton DA, Brüning R, Markowitsch HJ, Kalla R,
et al. Vestibular loss causes hippocampal atrophy and impaired spatial
memory in humans. Brain: A Journal of Neurology 2005;128(11):2732–41.
21. Potegal M, Copack P, de Jong J, Krauthamer G, Gilman S. Vestibular input
to the caudate nucleus. Experimental Neurology 1971;32(3):448–65.
22. Suzuki M, Kitano H, Ito R, Kitanishi T, Yazawa Y, Ogawa T, etal. Cortical and
subcortical vestibular response to caloric stimulation detected by function-
al magnetic resonance imaging. Brain Research Cognitive Brain Research
2001;12(3):441–49.
23. Rancz EA, Moya J, Drawitsch F, Brichta AM, Canals S, Margrie TW. Widespread
vestibular activation of the rodent cortex. The Journal of Neuroscience
2015;35(15):5926–34.
24. Vitte E, Derosier C, Caritu Y, Berthoz A, Hasboun D, Soulié D. Activation of
the hippocampal formation by vestibular stimulation: a functional magnetic
resonance imaging study. Experimental Brain Research 1996;112(3):523–26.
25. Lopez C, Blanke O, Mast FW. The human vestibular cortex revealed by coor-
dinate-based activation likelihood estimation meta-analysis. Neuroscience
2012;212:159–79.
26. Hufner K, Stephan T, Hamilton D, Kalla R, Glasauer S, Strupp M, etal. Gray-
matter atrophy after chronic complete unilateral vestibular deafferentation.
Annals of the New York Academy of Sciences 2009;1164(1):383–85.
27. Helmchen C, Klinkenstein J, Machner B, Rambold H, Mohr C, Sander T.
Structural changes in the human brain following vestibular neuritis indicate
central vestibular compensation. Annals of the New York Academy of Sciences
2009;1164(1):104–15.
28. zu Eulenburg P, Stoeter P, Dieterich M. Voxel‐based morphometry de-
picts central compensation after vestibular neuritis. Annals of Neurology
2010;68(2):241–49.
29. Göttlich M, Jandl NM, Sprenger A, Wojak JF, Münte TF, Krämer UM, etal.
Hippocampal gray matter volume in bilateral vestibular failure. Human Brain
Mapping 2016;37(5):1998–2006.
30. Kremmyda O, Hüfner K, Flanagin VL, Hamilton DA, Linn J, Strupp M, etal.
Beyond dizziness: virtual navigation, spatial anxiety and hippocampal volume
in bilateral vestibulopathy. Frontiers in Human Neuroscience 2016;10:139.
31. Wurthmann S, Naegel S, Steinberg BS, Theysohn N, Diener HC,
Kleinschnitz C, etal. Cerebral gray matter changes in persistent postural
perceptual dizziness. Journal of Psychosomatic Research 2017;103:95–101.
32. Li C, Zuniga MG, Nguyen KD, Carey JP, Agrawal Y. How to interpret latencies
of cervical and ocular vestibular-evoked myogenic potentials: our experi-
ence in fty-three participants. Clinical Otolaryngology 2014;39(5):297–301.
33. Nguyen KD, Welgampola MS, Carey JP, Nguyen KD, Welgampola MS,
Carey JP. Test-retest reliability and age-related characteristics of the oc-
ular and cervical vestibular evoked myogenic potential tests. Otology &
Neurotology 2010;31(5):793–802.
34. Li C, Layman AJ, Carey JP, Agrawal Y. Epidemiology of vestibular evoked
myogenic potentials: data from the Baltimore Longitudinal Study of Aging.
Clinical Neurophysiology 2015;126(11):2207–15.
35. Harun A, Oh ES, Bigelow RT, Studenski S, Agrawal Y. Vestibular impairment
in dementia. Otology & Neurotology 2016;37(8):1137–42.
36. Agrawal Y, Davalos-Bichara M, Zuniga MG, Carey JP. Head impulse test
abnormalities and in uence on gait speed and falls in older individuals.
Otology & Neurotology 2013;34(9):1729–35.
37. Agrawal Y, Schubert MC, Migliaccio AA, Zee DS, Schneider E, Lehnen N,
et al. Evaluation of quantitative head impulse testing using search coils
versus video-oculography in older individuals. Otology & Neurotology
2014;35(2):283–88.
38. Kamil RJ, Jacob A, Ratnanather JT, Resnick SM, Agrawal Y. Vestibular func-
tion and hippocampal volume in the baltimore longitudinal study of aging
(BLSA). Otology & Neurotology 2018;39(6):765–71.
39. Jacob A, Tward DJ, Resnick S, Smith PF, Lopez C, Rebello E, etal. Vestibular
function and cortical and sub-cortical alterations in an aging population.
Heliyon 2020;6(8):e04728.
40. Shock NW, Gerontology Research Center. Normal human aging: the
Baltimore longitudinal study of aging. Baltimore, MD: U.S. Dept. of Health
and Human Services, Public Health Service, National Institutes of Health,
vestibular loss – saccular and semicircular canal sensory
loss in particular – and gray matter volume loss of the
thalamus, basal ganglia, and left hippocampus, three
vestibular subcortical structures that receive peripher-
al vestibular input. Future work will need to determine
the timing and sequence of the relationships between
vestibular function and neuromorphological alterations.
ACKNOWLEDGMENTS
This work was supported in part by the National Institute
on Aging [grant number R01 AG057667], National
Institute on Deafness and Other Communication
Disorders [grant number R03 DC015583], and National
Institutes of Health [grant number P41 EB015909] and by
the Intramural Research Program, National Institute on
Aging, National Institutes of Health.
CONFLICTS OF INTEREST
The authors report no con icts of interest.
REFERENCES
1. Smith PF. The growing evidence for the importance of the otoliths in spatial
memory. Frontiers in Neural Circuits 2019;13:66.
2. Bigelow RT, Agrawal Y. Vestibular involvement in cognition: visuospatial
ability, attention, executive function, and memory. Journal of Vestibular
Research 2015;25(2):73–89.
3. Cullen KE. The neural encoding of self-generated and externally applied
movement: implications for the perception of self-motion and spatial
memory. Frontiers in Integrative Neuroscience 2014;7:108.
4. Smith PF, Zheng Y. From ear to uncertainty: vestibular contributions to cog-
nitive function. Frontiers in Integrative Neuroscience 2013;7:84.
5. Yoder RM, Taube JS. The vestibular contribution to the head direction sig-
nal and navigation. Frontiers in Integrative Neuroscience 2014;8:32.
6. Agrawal Y, Carey JP, Della Santina CC, Schubert MC, Minor LB. Disorders
of balance and vestibular function in US adults: data from the National
Health and Nutrition Examination Survey, 2001–2004. Archives of Internal
Medicine 2009;169(10):938–44.
7. Paige GD. Senescence of human visual-vestibular interactions. Journal of
Vestibular Research 1992;2(2):133–51.
8. Zalewski CK. Aging of the human vestibular system. Seminars in Hearing
2015;36(3):175–96.
9. Semenov YR, Bigelow RT, Xue Q, du Lac S, Agrawal Y. Association between
vestibular and cognitive function in U.S. adults: data from the National
Health and Nutrition Examination Survey. The Journals of Gerontology:
Series A: Biological Sciences and Medical Sciences 2016;71(2):243–50.
10. Bigelow RT, Semenov YR, Trevino C, Ferrucci L, Resnick SM, Simonsick EM,
etal. Association between visuospatial ability and vestibular function in the
Baltimore Longitudinal Study of Aging. Journal of the American Geriatrics
Society 2015;63(9):1837–44.
11. Xie Y, Bigelow RT, Frankenthaler SF, Studenski SA, Moffat SD, AgrawalY.
Vestibular loss in older adults is associated with impaired spatial navigation:
data from the triangle completion task. Frontiers in Neurology 2017;8:173.
12. Anson ER, Ehrenburg MR, Wei EX, Bakar D, Simonsick E, Agrawal Y.
Saccular function is associated with both angular and distance errors on the
triangle completion test. Clinical Neurophysiology 2019;130(11):2137–43.
13. Bilkey DK. Space and context in the temporal cortex. Hippocampus
2007;17(9):813–25.
14. Lopez C, Blanke O. The thalamocortical vestibular system in animals and
humans. Brain Research Reviews 2011;67(1–2):119–46.
15. Hitier M, Besnard S, Smith PF. Vestibular pathways involved in cognition.
Frontiers in Integrative Neuroscience 2014;8:59.