Pharmacological fMRI: methodological concerns

Richard Wise, wiserg@cardiff.ac.uk

Outline

- What is Pharmacological FMRI and why do we do it?
- What are the challenges of interpretation?
- The need for quantitation: measurements of oxygen metabolism as a good candidate.

Pharmacological FMRI: why?

- Demonstrate a drug effect on central activity
 - Central penetration?
 - Choosing a dose
- Provide confidence for go/no-go decisions in drug development
- Investigate mechanisms of action at a brain systems level
 - Comparing compounds with different mechanisms
- A neuroscientific tool for modulating brain systems

Pharmacological FMRI: what?

- FMRI experiment (generally BOLD) + drug administration
- Pharmacological modulation of
 - Brain 'activity' over pharmacokinetic timescales

Pharmacological FMRI: what?

- FMRI experiment (generally BOLD) + drug administration
- Pharmacological modulation of
 - Task related brain activity

Pharmacological FMRI: what?

- FMRI experiment (generally BOLD) + drug administration
- Pharmacological modulation of
 - Resting state activity / networks / connectivity

Conscious sedation with midazolam

Harrison RV et al. Cerebral cortex. 2002

Field homogeneity & oxygenation state

Blood oxygenation

Bandettini and Wong. Int. J. Imaging Systems and Technology. 6:133 (1995)

Reduced vascular reactivity: aging as an example

- Reduced vascular reactivity to a motor stimulus
- Reicker et al 2003 JCBFM
- Altered neurovascular coupling with age

N = normal response

Physiology of BOLD signal

Effect of Acetazolamide on fMRI Response

20% increase in baseline CBF

Effect of Acetazolamide on fMRI Response

20% increase in baseline CBF

→ no effect on ∆CBF with
finger tapping,

Effect of Acetazolamide on fMRI Response

20% increase in baseline CBF

→ no effect on ∆CBF with
finger tapping,

→ but BOLD response to finger tapping reduced by 35%

G. Brown et al, JCBFM 2003

Physiology of BOLD signal

CBF changes contribute to BOLD signal

Psilocybin effects on cerebral blood flow

- Psilocybin partial agonist of 5-HT2A receptor
- Focal perfusion decreases (15 subjects)

Psilocybin effects on cerebral blood flow

 But has energy usage changed or just the function of the blood vessels?

CBF drug effects: caffeine

- Another example, of a 'drug effect'
- This is almost completely a vascular effect. Substantial global decreases in neuronal activity are unlikely.
- ... so can we go further in the search for quantification of 'activity' than CBF?

Drug induced change in vascular response

- Indomethacin
 - Non-steroidal anti-inflammatory drug
 - Inhibits Cox1 & 2 that participate in prostaglandin synthesis
- Vascoconstrictive effects

CBF response to finger tapping

Physiology of BOLD signal

Oxygen consumption

Energy metabolism: synaptic activity

- Action potentials at pre-synaptic cell, release glutamate
- Open ion channels on post-synaptic cell
- Reuptake of glutamate by astrocytes (glucose metabolism)
- Pump ions out of cell to restore ionic gradients
- Approx 75% of energy usage (consequences of glutamate release)

Attwell & ladecola 2002

Metabolic Activity

 This energy is provided in the form of ATP.

• ATP is produced from glucose by oxidative phosphorylation and the Kreb's cycle.

ACETYL COA

Oxidative
Phosphorylation

TCA

Cycle

2 CO₂

• Rate of **oxygen consumption** by oxidative phosphorylation is a good measure of neural activity.

Stoichiometric coupling of brain glucose metabolism and glutamatergic neuronal activity

NICOLA R. SIBSON*¶, AJAY DHANKHAR*, GRAEME F. MASON†, DOUGLAS L. ROTHMAN‡, KEVIN L. BEHAR\$, AND ROBERT G. SHULMAN*

Fig. 3. Graph demonstrating the correlation between the rate of oxidative Glc consumption (CMR_{Glc(ox)}) and the rate of glutamateneurotransmitter cycling (V_{cycle}).

Anaesthesia

- Glucose metabolism (18 FDG) PET
- % Decreases during anaesthesia

Rate of cerebral metabolic oxygen consumption

$$CMRO_2 = C_aO_2 \times OEF \times CBF$$

Rate of cerebral metabolic oxygen consumption

Summary

- Pharmacological FMRI has proved useful, but challenging in mapping drug effects in the human brain.
- Interpretation of BOLD needs to consider potential confounding drug effects.
- Improved quantitation by measuring the rate of cerebral oxygen consumption should improve interpretability of observed drug effects in the brain.

Acknowledgements

- CUBRIC
 - Kevin Murphy
 - Alan Stone
 - Esther Warnert
 - Ashley Harris
 - Judith Hall
 - Mike Germuska

- HEFCW
- EPSRC
- Wellcome Trust

