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Abstract Due to the high temporal resolution of MEG data they are well suited
to study brain dynamics while the limited spatial resolution constitutes a major
confounder when one wants the estimate brain connectivity. To very large extent,
functional relationships between MEG sensors and also between estimated sources
are caused by incomplete demixing of the brain sources. Many measures of func-
tional and effective connectivity are highly sensitive to such mixting artifacts. In
this bookchapter we review methods which address this problem. They are all based
on the insight that the imaginary part of the cross-spectra cannot be explained as
a mixing artifact. Several variants of this idea will be presented. We will present
three different methods adapted to localize source interactions: a) Minimum Over-
lap Component Analysis (MOCA) decomposes linear estimates of the P most rel-
evant singular vectors of the imaginary parts of the cross-spectra, b) the MUSIC
algorithm can be applied to this same subspace, and c) the estimated sources can
be analyzed further using multivariate generalizations of the imaginary part of co-
herency. Finally, a causal relation between these sources can be estimated using the
Phase Slope Index (PSI). The methods will be illustrated for empirical MEG data of
a single subject under resting state condition.

1 Introduction

Magnetoencephalography (MEG) and Electroencephalography (EEG) can directly
measure ongoing brain activity at the temporal scale of neuronal communication, i.e.
frequencies nominally in the range of 1 - 100 Hz. Although these techniques feature
such a millisecond time resolution, their spatial resolution is intrinsically limited by
the fact that neuronal signals are recorded from the scalp (Hari and Salmelin 2012).
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In the past decades the main focus of EEG and MEG research was the analysis
of event related fields, i.e. the average brain response to a given stimulus. More re-
cently, the interest of the scientific community has moved towards the understanding
of how information is integrated in the brain. Neural oscillations, which are thought
to be a direct manifestation of cortical connectivity (Singer 1999; Schnitzler and
Gross 2005; Varela et al. 2001), have thus become the focus of the analysis. The
ability of MEG (and EEG) to study brain connectivity has been shown by a large
number of studies (Fries 2009; Gow et al. 2008; Gross et al. 2002; Gross et al. 2006;
Ioannides et al. 2000; Jerbi et al. 2007; Siegel et al. 2008; Wolmersdorf and Fries
2006), the great preponderance of this work still concerns coherence induced by
task- or stimulus-related events. Nevertheless, strong evidence has been provided
by the functional magnetic resonance (fMRI) research in the last fifteen years for
the brain as an ensemble of large distributed brain networks that show patterns of
coherent activity also in the absence of any imposed task or stimulus, i.e. at rest.
Some of these networks are associated with simple sensory processing and others
with higher level cognitive function (Buckner and Vincent 2007; Cole et al. 2010;
Daglish at al. 2005; Deco and Corbetta 2010; Damoiseaux and Greicius 2009; Fox
and Raichle 2007; Miller et al. 2009). Very recently it has been shown that networks
can also be detected using MEG (Brookes et al. 2011a; Brookes at al. 2011b; de
Pascquale et al. 2012; Liu et al. 2010). Despite these promising results, a number of
methodological difficulties remain when studying brain connectivity using nonin-
vasive electrophysiological measurements like MEG or EEG. The major challenge
is that the data are largely unknown mixtures of activities of brain sources and thus
spurious connectivity, which can be estimated by various measures of statistical de-
pendencies (Pereda et al. 2005), can exist that is due entirely to signal leakage rather
than to interacting sources (Brookes et al. 2012; Schoffelen and Gross 2009).

To address this issue, we suggest to construct estimates of brain connectivity from
quantities that are unbiased by non-interacting sources. For zero mean data1 the
linear statistical signal properties can be determined by the cross-spectral matrices
S( f ) defined as

Si j( f ) = ⟨xi( f )x∗j( f )⟩ (1)

where xm( f ) are the Fourier transforms at frequency f in channel m for a given seg-
ment or trial and ⟨·⟩ denotes the expectation value which is typically approximated
by an average over the segments or trials.

It is straight forward to show that noninteracting sources do not contribute sys-
tematically, i.e. apart from random fluctuations around zero to the imaginary part
of the cross-spectra, ℑ(S( f )), regardless of the number of sources and details of
the forward mapping (Nolte et al. 2004). The reason is that the forward mapping is
essentially instantaneous and does not induce phase delays to excellent approxima-
tion (Stinstra and Peters 1998) which would be necessary to yield a nonvanishing
imaginary part of S( f ).

From the cross-spectra S( f ) one can construct coherency matrices C( f ), which
are a normalized version of S( f ), as

1 In an event related design the mean can be subtracted.



Ci j( f ) =
Si j( f )√

Sii( f )S j j( f )
(2)

In contrast to the imaginary parts of the cross-spectra, ℑ(C( f )) also depends on in-
dependent sources through the denominator in Eq.2. However, independent sources
can only lead to a decrease of ℑ(C( f )) and hence also ℑ(C( f )) reflects true in-
teraction even though the physiological interpretation is not trivial especially when
interpreting differences of ℑ(C( f )) e.g. between different tasks.

Based on these observations we suggested a series of methods to identify and
localize brain interactions (Nolte et al. 2006; Marzetti et al. 2008; Nolte et al. 2009;
Ewald et al. 2012, Shahbazi et al. 2012). Additionally, we proposed a method to
identify causal structures of the dynamical system under study (Nolte et al. 2008).
We here give a brief review of some of these methods (Nolte et al. 2006; Marzetti
et al. 2008; Ewald et al. 2012, Shahbazi et al. 2012; Nolte et al. 2008) to identify
interacting brain sources and to estimate causal relationships. All the methods will
be demonstrated using real data whose characteristics are defined in the following
section.

2 Data set

For illustrative purposes, and for illustrative purposes only, we will apply the meth-
ods, which will be reviewed throughout this chapter, to an emprirical MEG data set.
The data set consists of around 20 minutes MEG data, under resting state, with 10
minutes eyes closed and 10 minutes eyes open. We will average across these two
conditions. MEG was measured with a CTF system with 273 channels in Hamburg-
Eppendorf.

For the subject an anatomical MRI data set was available which was analyzed
with fieldtrip/SPM (Oostenveld et al. 2011) for segmentation to get a volume con-
ductor, which was defined by the inner surface of the skull. Forward calculation was
done with an expansion of the magnetic lead field (Nolte 2003).

Spectral analysis was done with a frequency resolution of 0.5 Hz using short-time
FFTs of Hanning windowed segments of 2 seconds duration. In Fig.1 we show the
power for all channels and the imaginary part of coherency (ImCoh) for all pairs of
channels as function of frequency. While the peak in the alpha range is very clear it
is fairly weak in the beta range and not observable in the gamma range. The rhythms
are more clear for ImCoh showing two peaks in the alpha range, at 8Hz and 10 Hz,
a clear peak in the beta range, with a center at 20.5 Hz, and an additional weaker
peak at 31 Hz.

In general, subjects can be very different. The present subject has prominent
peaks of the imaginary part of coherency at alpha, beta, and gamma frequencies
both under eyes closed and eyes open condition. The gamma peak is apparently a
(second) higher harmonic of the motor alpha rhythm. At the alpha peak the dis-
tinction between central and occipital alpha is not straight forward. The beta-peak,



on the other hand, appears to be clearly related to activity in sensory-motor areas,
which is also the case for the weaker gamma peak. Since we here show just one
example for illustration we decided to discuss in the detail the inverse solutions for
the beta-rhythm.

Fig. 1 Power for all channels and ImCoh for all pairs of channels.

In Fig.2 we show the imaginary part of coherency at 20.5 Hz. Each of the 50
circles represents one out of the total of 273 channels and shows its ImCoh value to
all other channels. The subset of 50 equally distributed channels was chosen to ease
visibility. We observe clear dipolar structures over both hemispheres, however, with
unclear origin from visual inspection.

Fig. 2 ImCoh at 20.5 Hz between 50 selected channels and all other channels.



3 Methods

3.1 Identifying the subspace

Below, we will use two different inverse methods to find the sources of the imag-
inary part of the cross-spectrum. Both methods require the identification of a low
dimensional subspace within the channel space. Analogous to the standard PCA
decomposition of the full cross-spectrum of a covariance matrix we perform a sin-
gular value decomposition of the imaginary part of the cross-spectrum at the signal
frequency f = 20.5Hz

Ssignal = S( f ) (3)

For some applications it is convenient to estimate a meaningful contrast, i.e. a
cross-spectrum which contains similar background noise but not the rhythmic phe-
nomenon which is under study. We will here construct this as an interpolation be-
tween neighboring frequencies:

Snoise =
1
2
(S( f +∆ f )+S( f −∆ f )) (4)

Fig. 3 Top: Singular values of imaginary part of cross-spectrum at 20.5 Hz. Bottom: Ratio of
singular values of imaginary part of cross-spectrum at 20.5 Hz and a noise cross-spectrum.



The singular values of ℑ(Ssignal) and the ratios of these and the corresponding
singular values of ℑ(Snoise) are shown in Fig.3. Since the imaginary parts of cross-
spectra are real valued and antisymmetric, all singular values occur in pairs. (For an
odd number of channels the last one is zero.) We observe the presence of four promi-
nent singular values. The ratios of singular values converge roughly to 1.37 ≈

√
2,

indicating that the background noise is estimated too low. This is expected if the
background noise consists essentially of non-interacting sources: the linear inter-
polation effectively doubles the number of averages and since for non-interacting
sources the imaginary part of the cross-spectrum drops with 1/

√
N for N averages,

we expect an additional drop by a factor
√

2. The factor is slightly less than
√

2
which is possibly due to the typical 1/ f -decay of the background noise: it is a con-
vex function having the property that linear interpolations are above the true value.
Also from this ratio we observe that only 4 singular values are clearly above noise
level. In the following we will always analyze this 4-dimensional subspace.

Fig. 4 First four singular vectors of the imaginary of the cross-spectrum at f = 20.5 Hz.

The singular vectors are shown in Fig.4. They roughly have dipole structure, but
apparently the dipoles are not well separated. A standard method to demix sources
is Independent Component Analysis (ICA), which, however, is not appropriate here,
since we are studying interacting sources in sharp contrast to the fundamental as-
sumption of ICA. A separation can still be done using dynamical assumptions if
one assumes that all interactions are pairwise using the ’Pairwise Interacting Com-
ponent Analysis’ (PISA) (Nolte et al. 2006). Then the pairs can be separated from
each other but a separation of the two sources within each pair is not possible. Also,
for such a separation a wide-band analysis of the the data is necessary and cannot
be done for a single frequency alone. For completeness, we will sketch the theory
behind it, but below we will continue with the space spanned by all chosen singular
vectors without dynamical separation.



In general, EEG and MEG data are a superposition of many subsystems includ-
ing (effectively) independent sources but also interacting rhythmic sources of var-
ious physiological content. To separate these systems one can assume that (a) all
interactions are pairwise and that (b) there are not more interacting sources than
channels. These two assumptions are a clear simplification of the true brain dynam-
ics, but they yield a unique decomposition of the data and may capture the most
relevant aspects of the interaction observed in EEG/MEG data. These assumptions
can be expressed for an even number of N channels as a model for the imaginary
part of the cross spectra:

ℑ(S( f )) =
N/2

∑
k=1

pk( f )
(
akbT

k −bkaT
k
)

(5)

For each k the set of topographies (ak and bk) and the ’interaction spectrum’ pk( f )
form a - what we call - PISA-component. We note that this model is only unique up
to linear mixing of the two topographies for each k. In other words, the model only
identifies the 2D-subspace spanned by the two topographies and not the individual
components. For technical details we refer to (Nolte et al. 2006).

3.2 Inverse method

In order to uniquely decompose the 2D-subspaces found by the singular value de-
composition into contributions from individual sources we must introduce further
spatial constraints on the nature of the sources. To apply a method designed to this
purpose, outlined in the next section, it is necessary to use a linear inverse method.
While in principle the decomposition in sensor space itself does not depend very
much on the chosen inverse method, results in source space can vary substantially.
We here use eLORETA (Pascual-Marqui et al. 2011), which is a non-adaptive linear
inverse solver with a block-diagonal weight matrix adjusted such that the estimated
source distribution has maximal power at the true source for a single dipole. The
inverse method will be applied for a predefined grid of voxels in the brain. For the
m.th brain voxel and for the k.th dipole direction and for a given forward model,
eLORETA defines a spatial filter Gmk, which is a column vector of N elements for
N channels, such that for the data vector x(t) in channel space the activity of the
k.th dipole moment on the m.th voxel is given by

smk(t) = GT
mkx(t) (6)

Due to the linearity of the inverse method, one can directly apply the spatial
filters to the cross-spectra to estimate the elements of the 3×3 cross-spectral matrix
P( f ,m) at the m.th voxel at a given frequency

Pkk′( f ,m) = GT
mkS( f )Gmk′ (7)



The maximum eigenvalue of P( f ,m) is the power of the strongest dipole at that
location and the corresponding eingevector is the orientation.

Fig. 5 Power ratio between signal and noise calculated from cross-spectra using eLORETA.

For the present data, the spectral peak in the beta range is very small. Due to
the large noise, meaningful source estimates could not be achieved. Instead, it was
necessary, to calculate the power in source space both for the Ssignal and Snoise de-
fined in (3) and (4) and to calculate the ratio of powers shown in Fig.5.2 We observe
signal peaks in left and right sensory-motor areas as can be expected for central
beta-rhythms. We emphasize that for the estimation of the sources of the interac-
tion, to be conducted in the nect section, the localization of power is not necessary,
but only serves to demonstrate the consistency of the results.

3.3 Minimum Overlap Component Analysis (MOCA)

3.3.1 The concept

The goal of MOCA is to decompose sets of topographies based on assumptions
about the underlying sources and taking note that orthogonality assumptions, as

2 We also found that adaptive beamformer performs worse: we could not find convincing inverse
solutions for both the signal power and for the power ratios.



implicit in PCA or SVD decompositions, are unrealistic (Marzetti et al. 2008). We
will explain the concept for two topographies. We apply a linear inverse operator G
onto the singular vectors x1 and x2, such that these topographies are mapped into
distributions si of the source field

si = G(xi) (8)

where si = si(m,k) is a three dimensional vector field calculated in brain voxels
m = 1, ..,M and in directions k = 1, ..,3.

The distributions do not represent the sources of the brain, denoted as qi, but are,
within the accuracy of the inverse method, a yet unknown superposition of them:

si =
2

∑
j=1

Wi jq j (9)

for i = 1,2. The 2× 2 mixing matrix W can be calculated uniquely under the fol-
lowing constraints

1. The sources are orthonormal:

< qi,q j >≡ ∑
m,k

qi(m,k)q j(m,k) = δi j (10)

2. The sources have minimum overlap:

L(q1,q2)≡ ∑
m

(
∑
k

q1(m,k)q2(m,k)

)2

= min (11)

This cost function first squares the scalar product of two dipole moments at each
voxel and then sums these squares over all voxels. It vanishes if the two dipole
distributions have disjoint support (i.e. disjoint regions of non-vanishing activ-
ity), thus measuring overlap. It also vanishes if the orientations at each voxel
are orthogonal and therefore corresponds to a weaker form of overlap allowing
in principle also activities at the same location as long as the orientations are
sufficiently different. Thus, a strong bias towards remote interaction is removed.

The minimization in Eq.11 can be done analytically (Marzetti et al. 2008). If the
concept is generalized to more than two topographies the minimization requires a
numerical approach, which, however, is surprisingly fast and robust (Nolte et al.
2009). We note that the spatial constraints (Eq.10 and Eq.11) and the methods to
solve the minimization are similar to those used in ICA in the context of fMRI data
analysis (McKeown and Sejnowski 1998; Matsuda and Yamaguchi 2004) with the
major difference that we here decompose vector fields rather than scalar ones. To
relate to ICA to decompose EEG and MEG data, the orthogonality constraint in
Eq.10 corresponds, mutatis mutandis, to ’sphering’ as is used in most ICA methods:
the data are transformed to be exactly uncorrelated while independence in higher
statistical orders is only forced to be as good as possible.



3.3.2 Illustration

Once the demixing matrix W is found, it can be applied equally to the source distri-
butions and the topographies. If U is an N×K matrix containing the first K singular
vectors as columns, and H =W−1 is the demixing matrix, then Û =UHT contains
as columns the demixed topographies. The demixed topographies for the singular
vectors shown in Fig.4 are presented in Fig.6. While, of course, the true result is
not known for real data, we observe that the apparent mixture of several dipolar
structures has been removed.

Fig. 6 Demixed singular vectors using MOCA

In Fig.7 we show the power of the source estimate for all four demixed topogra-
phies. We can see that, similar to the result shown in Fig.5, sources are located
in left and right motor-sensory areas. In contrast to the localization of the entire
cross-spectrum, for this localization of the interacting sources it is not necessary to
visualize power ratios to achieve meaningful results.

3.3.3 Minimization of the cost function

In this subsection we present the algorithm to solve the minimization problem de-
fined by MOCA. If we only have two source distributions this can be done analyti-
cally. To do this we first whiten the distributions si to fulfill (10)

ŝi = ∑
j

Ai js j (12)

with A =V−1/2 and



Fig. 7 Sources of demixed singular vectors. Each row displays one source distribution with shown
MRI-slices centered at the maximum of the respective power distribution.

Vi j = ∑
m,k

si(m,k)s j(m,k) (13)

In a second step we rotate ŝi as(
q1
q2

)
=

(
cos(ϕ) sin(ϕ)
−sin(ϕ) cos(ϕ)

)(
ŝ1
ŝ2

)
(14)

and find the angle ϕ by minimizing the cost function defined in (11). This minimiza-
tion can be done analytically in closed form and leads to the solution

ϕ0 =
1
4

tan−1
(

b
a− c

)
(15)

with

a = ∑
m

(
∑
k

ŝ1(m,k)ŝ2(m,k)

)2

b = ∑
m

(
∑
k

ŝ1(m,k)ŝ2(m,k)∑
k
(ŝ1(m,k)ŝ1(m,k)− ŝ2(m,k)ŝ2(m,k))

)



c =
1
4 ∑

m

(
∑
k
(ŝ1(m,k)ŝ1(m,k)− ŝ2(m,k)ŝ2(m,k))

)2

.

Various solutions arise due to the various branches of the tan−1 function and differ
by multiples of π/4. Minima and maxima are alternating, and we only have to cal-
culate two neighboring solutions with angles ϕmax and ϕmin for the maximum and
minimum, and pick the one referring to the minimum out of these two.

For more than two sources the cost function in (11) cannot be solved analytically
and must be solved numerically with an iterative procedure using the analytic solu-
tion for any given pair of source distributions. These ’sweeps’ are repeated over all
pairs until convergence is reached. This procedure appears at first sight to be rather
naive because such a rotation might affect overlaps between other pairs of sources.
This, however, is not the case: all changes between other pairs cancel out exactly
in the total cost function which results in a highly efficient algorithm with only few
sweeps necessary.

3.4 MUSIC

The Multiple Signal Classification (MUSIC) algorithm is a method which finds
sources based on low dimensional subspaces of the entire signals assuming that the
topographies of dipoles on true source locations are contained in such a subspace.
This is most commonly applied to low dimensional approximations of a covariance
matrix defined by the K eigenvectors corresponding to the K largest eigenvalues.
Recently, it was suggested to apply this algorithm to the K singular vectors corre-
sponding to the K largest singular values of the imaginary part of the cross-spectrum
(Shahbazi et al. 2012).

We here recall the essential steps for the MUSIC algorithm. We will at first con-
sider the almost trivial case of fixed dipole orientations with a topography L and
a one-dimensional subspace U, which are both N × 1 vectors. The consistency be-
tween dipole field and subspace can be measured by the angle

cosΘ =
LT U

(LT L)1/2 (UT U)1/2 (16)

In the general case, the subspace U is an N ×K matrix and L is an N × 3 matrix
corresponding to all three dipole orientations. The question then is whether some
dipole at a specific location is consistent with the subspace, i.e. whether Lx with
unknown dipole moments x matches a linear combination of the columns of U ,
which is expressed as Uy with y being an unknown Kx1 vector. For the minimal
angle we have

cosΘ = max
x,y

xT LTUy
(xT LT Lx)1/2 (yTUTUy)1/2 (17)



For later use, we express this maximization problem by a gain function G(x,y)
with

G(x,y) =
xT Zy

(xT Xx)1/2 (yTY y)1/2 (18)

where X and Y are symmetric and positive definite matrices. Maximization, as well
as minimization, of G leads to the eigenvalue problem

X−1/2ZY−1ZT X−1/2x̂ = λ x̂ (19)
Y−1/2ZT X−1ZY−1/2ŷ = λ ŷ (20)

with

x̂ = X1/2x (21)
ŷ = Y 1/2y (22)

The eigenvalues in (19) and (20) are identical, but the eigenvectors are not. If λmax is
the maximal eigenvalue, then G is maximized and minimized by the corresponding
eigenvectors and it attains the value

G2
max = λmax (23)

Whether a maximim G2 is a maximum or minimum of G depends on the chosen
sign of the eigenvectors which is arbitrary. If we have a maximum for some choice
of signs we get a minimum by switching the sign of one of the eigenvectors.

The MUSIC algorithm corresponds to the above case by setting

X = LT L (24)
Y = UTU = idK×K (25)
Z = LTU (26)

For the minimal angle we get

cos2 Θmin = λmax (27)

and the dipole orientation x can be calculated from (21). Finally, the topography of
the optimized dipole reads

v = Lx (28)

For a MUSIC-scan the maximal eigenvalue λmax is calculated for all voxels, and
displayed as 1/(1−λmax) which is infinite for a perfect fit.

The MUSIC algorithm can be used to find the location in the brain which is most
consistent with the observed subspace as the voxel which maximizes λmax now also
over source points. The technical disadvantage of MUSIC is that finding several
maxima may be difficult (Mosher et al. 1998). As a remedy, a modification called
Recursively Applied and Projected (RAP)- MUSIC was proposed (Mosher et al.
1999). Here, instead of searching simultaneously for several local maxima, only



Fig. 8 RAP-MUSIC scan of imaginary part of cross-spectrum. The k.th row shows the k.th scan
in the three orthogonal views.

global maxima are determined iteratively. In order to find the next source location,
the subspace is updated by projecting out the previously found topographies and
then the maximization is repeated. If V = (v1, ...,vl) is the matrix containing as
columns the topographies of l sources, then these topographies are projected out
both from L and the subspace. Defining a projector as

P = id −V
(
V TV

)−1/2
V T (29)

and in order the find the l −1.th location, L is replaced by PL and U is replaced by
PU and then the MUSIC algorithm is applied as outlined above.

The result of RAP-MUSIC scans is shown in Fig.8 for four interations. The red
crosses indicate the locations of the maximal eigenvalues which are almost identical
to the maxima found by the MOCA inverse solutions. In these figures, the top row
corresponds to a ’normal’ MUSIC scan without projection. All locations are in prin-
ciple contained in the scan but only the ’strongest’ source is visible in this scan. The
i.th row corresponds to a MUSIC-scan after the topographies of the i−1 previously
found sources is projected out.



3.5 ImCoh in source space

To calculate connectivity in source space we first map activities of sensors into
sources using eLORETA and then we calculate the imaginary part of coherency
between several sources. This is straight forward if the dipole orientation for each
voxel is known: the mapping into two voxels leads to a bivariate signal for which
ImCoh can be calculated. This is less trivial for unknown dipole orientation, as then
each voxel consists of three signals. We will here estimate the directions for each
pair voxels as those for which ImCoh is maximized (Ewald et al. 2012; Shahbazi et
al. 2012; Marzetti et al. 2013). Mathematically, this is very similar to the MUSIC
approach presented in the previous section.

Let F1 and F2, both of them being N×3 matrices, be the spatial filters (given here
by eLORETA) which map the sensor activity into voxel 1 and voxel 2, respectively.
If x(t) is the activity in the sensors, then the sources activity in the i.th voxel reads

si(t) = FT
i x(t) (30)

for i = 1,2. Then the cross-spectral matrices within each voxel reads

Ŝii( f ) = FT
i S( f )Fi (31)

recalling that S( f ) is the cross-spectrum in sensor space. The cross-spectral matrices
between voxel 1 and voxel 2 reads

Ŝ12( f ) = FT
1 S( f )F2 (32)

If xi is the dipole moment in the i.th voxel, ImCoh between the two dipoles reads

ImCoh =
xT

1 ℑ
(
Ŝ12
)

x2(
xT

1 Ŝ11x1
)1/2 (xT

2 Ŝ22x2
)1/2 (33)

with dependence on frequency f implicit. This, again, has the structure of (18) with
the setting Z = ℑ

(
Ŝ12
)
, X = Ŝ11, and Y = Ŝ22. The maximal imaginary coherency

and the dipole orientations are then given by (19)-(22) with

ImCohmax =
√

λmax (34)

In Fig.9 we show this maximizing ImCoh value between between a reference
voxels and all other voxels for four different reference voxels, which were found
previously from MOCA, and all other voxels. The reference voxels are indicated
by blue dots. We observe that ImCoh is maximized in the vicinity of the reference
voxels, indicating that the interaction is local.

Local interactions are always trivially observed if one calculates the absolute
value of coherency, called coherence, which is a mixing artefact: especially the co-
herence between a signal and itself is always one and such a result is meaning-
less. The situation, however, is different when calculating the imaginary part of co-



Fig. 9 Maximal ImCoh between reference voxel, calculated from MOCA, and all other voxels for
four different reference voxels.

herency, which always vanishes between a signal and itself. The interaction can still
come out to be local, if the true sources are very close to each other, but have dif-
ferent orientations. Due to the low spatial resolution of EEG/MEG inverse calcula-
tions this includes estimated interactions between a voxel and itself if the respective
sources are too close to each other to be resolved. Note, that this is also the basis of
the ’rotating diple model’ which is an effective model for two dipoles which have
such a small distance that putting them on the same location is reasonable within
the limited spatial resolution of EEG/MEG data.

Had we fixed the orientation according to power, we would not be able to ob-
serve such local interactions. In Fig.10 we show results for the absolute value of
imaginary part of coherency for fixed dipole orientations, chosen to the ones which
maximize the power for each voxel. For the sources on the right hemisphere we get a
qualitatively similar picture but with substantially suppressed values for ImCoh. The
local interaction is almost completely lost on the left hemisphere and the remaining
interaction appears to be too low and scattered to be considered meaningful.



Fig. 10 ImCoh between reference voxel, calculated from MOCA, and all other voxels for four
different reference voxels with dipole orientation fixed by power.

3.6 Phase Slope Index (PSI)

We finally want to estimate causal structures between the estimated sources. The
’Phase Slope Index’ (PSI) estimates the causal structure between any two source
activities. It is defined as (Nolte et al. 2008)

Ψ̂i j = ℑ

(
∑
f∈F

C∗
i j( f )Ci j( f +δ f )

)
(35)

where Ci j( f ) is the complex coherency between sources i and j, as given in Eq.2,
and δ f is the frequency resolution of the coherency. F is the set of frequencies over
which the slope is summed. Usually, F contains all frequencies, but it can also be
restricted to a specified band for rhythmic activities.

To see that the definition of Ψ̂i j corresponds to a meaningful estimate of the
average slope it is convenient to rewrite it as

Ψ̂i j = ∑
f∈F

αi j( f )αi j( f +δ f )sin(Φ( f +δ f )−Φ( f )) (36)



with Ci j( f ) = αi j( f )exp(iΦ( f )) and αi j( f ) = |Ci j( f )| being frequency dependent
weights.
For smooth phase spectra, sin(Φ( f +δ f )−Φ( f ))≈ Φ( f +δ f )−Φ( f ) and hence
Ψ̂ corresponds to a weighted average of the slope.

We list the most important qualitative properties of Ψ̂ :

1. For an infinite amount of data and for arbitrary instantaneous mixtures of an
arbitrary number of independent sources, Ψ̂ is exactly zero, because mixtures
of independent sources do not induce an imaginary part of coherencies (Nolte
et al. 2004)) which in turn is necessary to generate a non-vanishing Ψ̂ . For finite
data, Ψ̂ will then fluctuate in this case around zero within error bounds. A special
case of this are phase jumps from 0 to ±π which can arise also for mixtures of
independent sources.

2. Ψ̂ is expressed in terms of coherencies, only. The standard deviation of a co-
herency is approximately constant and only depends on the number of averages
which is equal for all frequencies. Thus, large but meaningless phase fluctua-
tions in frequency bands containing essentially independent signals are largely
suppressed.

3. If the phase Φ( f ) is linear in f and provided that the frequency resolution is
sufficient (i.e. δ f is sufficiently small), the argument in the sum has the same
sign across all frequencies and then Ψ̂ will have the same sign as the slope of
Φ( f ).

Fig. 11 PSI in channel space.

It is convenient to normalize Ψ̂ by an estimate of its standard deviation



Ψ =
Ψ̂

std(Ψ̂)
(37)

with std(Ψ̂) being estimated by the Jackknife method. In the examples below we
consider absolute values of each larger than 2 as significant.

It is important to point out that the phase of coherency itself is not interpreted in
terms of causality. For example, a phase of π/2 switches to −π/2 if the sign of one
of the signals is reversed, but the PSI measure is invariant with respect to the sign of
the signals. Rather than on phase, PSI is based on the slope of the phase as a function
of frequency. Note, that a sign change adds a constant to the phase and has no effect
on the slope. The method assumes that the studied frequency range properly covers
the dynamical range. For purely periodic signals, any causality estimate would be
dubious. In that case Ψ would be insignificant because negative and positive slopes
cancel.

To calculate the causal relation for the beta range we calculated PSI in the fre-
quency range around the beta peak [ f −∆ f , f +∆ f ] with f = 20.5Hz and ∆ f =
2Hz. Results in channel space are shown in Fig.11. Absolute values of PSI above 2
are signicant without correction for multiple comparison with p ≤ .05. We observe
fairly large values values up to almost 5 but with highly unclear spatial structure.

Fig. 12 PSI between reference voxel (black dot) and all other voxels for four different references.
Blue color means the reference is receiving information from these areas and red means the refer-
ence is sending information to these areas.



To calculate PSI in source space we need to fix an orientation of the dipoles. For
each pair of voxels these orientations are chosen to maximize imaginary coherence
between the voxels at frequency f = 20.5Hz as explained in the previous section.
Results for reference voxels taken from results of the RAP-MUSIC algorithm are
presented in Fig.12. We observe higher (and hence more significant) values than on
the sensor level which can mainly be explained by the fact that the source orientation
was optimized to observe delayed interactions.

In contrast to ImCoh, for which we displayed the absolute value, the result now
has a sign. Such a sign was meaningless for ImCoh at the source level, because it
switches if we switch the sign of a source. Since the dipole moment was calculated
by an eigenvalue equation with meaningless sign of the eigenvector such a sign was
also meaningless for ImCoh. In contrast, PSI does not depend on the sign of the
dipole but reflects temporal order. In the figure, blue regions mean that the reference
voxel receives information from them, while the reference voxel send information to
the red ones. We emphasize, that maximizing ImCoh does not necessarily maximize
PSI. It is very well possible that the present approach still misses major effects which
are bigger than the ones observed.

4 Conclusion

We presented a series of methods to study functional and effective connectivity
from MEG/EEG data in the frequency domain. All presented methods addressed
the problem of volume conduction which is by far the most severe confounder when
one wants to estimate brain interactions. The basis of the methods is the observation
that brain interactions take some time which is much longer than the time needed
for the propagation of electromagnetic signals from a source to a sensor which can
be considered as quasi-instantaneous for the frequency ranges of interest (Stinstra
and Peters 1998). The finite time needed for different neuronal groups to interact
with each other makes it possibile to find true brain interactions by systematically
exploiting time delays between measured signals. This, however, does not mean
that for any brain interaction the time delay is observable. If, e.g., an interaction
is totally symmetric all net phase/time delays vanish and the interaction cannot be
studied with these methods.

We presented two different methods, MOCA and RAP-MUSIC, to localize inter-
acting sources both based on a singular value decomposition of the imaginary part
the cross-spectrum at some frequency. The crucial step is to determine a low dimen-
sional subspace of the signal space spanned by the singular vectors corresponding to
the largest P singular values. The choice of P, which corresponds here to the chosen
number of sources, is the only free parameter of the methods. For the chosen data
set we observed a drop of the k.th singular value to a noise floor for k > 4 and set
P = 4 accordingly. The evaluation of other or the development of new techniques to
choose P is beyond the scope of this book chapter.



Both presented inverse method only depend on the subspace spanned by the sin-
gular vectors and not on the vectors themselves. It is therefore irrelevant whether the
singular vectors themselves correspond to topographies of the single sources. The
first method, MOCA, is based on some linear inverse method for which we chose
eLORETA, but other choices are also possible. MOCA demixes the singular vec-
tors based on assumptions in source space. The second method was RAP-MUSIC
applied to this subspace and it assumes that the interacting sources are dipoles. We
then found final results to be almost identical for the two methods for the data at
hand. Interactions between voxels in the brain were estimated using a multivariate
method, with optimized source orientation for each voxel, which was capable of de-
tecting both local and non-local interactions. A comparison with a bivariate method
for which source orientation was fixed by power showed that the latter procedure
suppresses local interactions. This could lead to a potential bias towards remote
interaction. We finally estimated causal relations using the Phase Slope Index in
source space with reference voxels chosen from the preceding localization of inter-
acting sources. We observed clear and significant structures in source space which
could not be expected from sensor space results.

This book chapter is not an attempt to review all methods addressing the problem
of volume conduction. We concentrated on own methods, covering these only partly
and totally ignoring a couple of new approaches from other researchers (Pascual-
Marqui et al. 2011; Vinck et al. 2011; Stam et al. 2007; Hipp et al. 2012; Mei-
necke et al. 2012; Sekihara et al. 2011). The relation between our work and the
nonlinear measures presented in (Vinck et al. 2011) and the multivariate measures
in ((Pascual-Marqui et al. 2011) were presented in (Ewald et al. 2012). A more
complete survey and comparison of all methods will be addressed in the future.
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