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“The only relevant test of the validity
of a hypothesis is comparison of
prediction with experience.”

Milton Friedman
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Choosing models/hypotheses/theories

MacKay, DJC.
“Bayesian
interpolation.”
Neural computation
4, no. 3 (1992):
415-447.
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Evidence-based Science

...also just known as “science”.

Researchers claim to find differences between groups. Do
those findings actually discriminate?

How can we most accurately diagnose a disorder from image
data?

Pharma wants biomarkers. How do we most effectively
identify them?

There are lots of potential imaging biomarkers. Which are
most (cost) effective?

Pattern recognition provides a framework to compare data (or
preprocessing strategy) to determine the most accurate approach.
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A generative classification approach

p(x,y=0) = p(x|y=0) p(y=0)
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p(x,y=1) = p(x|y=1) p(y=1)

Feature 1

F
ea

tu
re

 2

0 2 4
−7

−6

−5

−4

−3

−2

−1

p(x) = p(x,y=0) + p(x,y=1)
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Discriminative classification approaches

Ground truth
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SVC
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Simple Logistic Regression
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Bayesian classification

Simple Logistic Regression
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Hyperplane Uncertainty
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Bayesian Logistic Regression
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Why Bayesian?

To deal with different priors.

Consider a method with 90% sensitivity and specificity.
Consider using this to screen for a disease afflicting 1% of the
population.
On average, out of 100 people there would be 10 wrongly
assigned to the disease group.
A positive diagnosis suggests only about a 10% chance of
having the disease.

P(Disease|Pred+) = P(Pred+|Disease)P(Disease)
P(Pred+|Disease)P(Disease)+P(Pred+|Healthy)P(Healthy)

= Sensitivity×P(Disease)
Sensitivity×P(Disease)+(1−Specificity)×P(Healthy)

Better decision-making by accounting for utility functions.
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Curse of dimensionality

Large p, small n.
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Nearest-neighbour classification
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Not nice
smooth
separations.

Lots of sharp
corners.

May be
improved with
K-nearest
neighbours.
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Rule-based approaches
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Corners matter in high-dimensions
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Corners matter in high-dimensions
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Dimensionality 6= number of voxels

Little evidence to suggest that most voxel-based feature
selection methods help.

Little or no increase in predictive accuracy.
Commonly perceived as being more “interpretable”.

Prior knowledge derived from independent data is the most
reliable way to improve accuracy.

e.g. search the literature for clues about which regions to
weight more heavily.

Cuingnet, Rémi, Emilie Gerardin, Jérôme Tessieras, Guillaume Auzias, Stéphane Lehéricy, Marie-Odile Habert,
Marie Chupin, Habib Benali, and Olivier Colliot. “Automatic classification of patients with Alzheimer’s disease from
structural MRI: a comparison of ten methods using the ADNI database.” Neuroimage 56, no. 2 (2011): 766-781.
Chu, Carlton, Ai-Ling Hsu, Kun-Hsien Chou, Peter Bandettini, and ChingPo Lin. “Does feature selection improve
classification accuracy? Impact of sample size and feature selection on classification using anatomical magnetic
resonance images.” Neuroimage 60, no. 1 (2012): 59-70.
See winning strategies in http://www.ebc.pitt.edu/PBAIC.html
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Linear versus Nonlinear methods

Linear methods are more interpretable.

Nonlinear methods usually increase
dimensionality.

Better to preprocess to obtain features
that behave more linearly.

40 50 60 70 80 90 100 110 120 130 140 150 160
1.4

1.5

1.6

1.7

1.8

1.9

2

Weight (kg)

H
ei

gh
t (

m
)

Body Mass Index (linear plot)

 

 
BMI=18.5
BMI=25
BMI=30

40 50 60 70 80 90 100 120 140 160
1.4

1.5

1.6

1.7

1.8

1.9

2

Weight (kg)

H
ei

gh
t (

m
)

Body Mass Index (log−log plot)

 

 
BMI=18.5
BMI=25
BMI=30

2 4 6 8 10

2

4

6

8

10

Feature 1

F
e
a
tu

re
 2

Raw Data

10
0

10
−1

10
0

10
1

Feature 1
F

e
a
tu

re
 2

Log−Transformed

John Ashburner Anatomical Features



Introduction
Geometric Variability

Similarity Measures
Real data

Manifolds
Principal Components

Transformed images fall on manifolds

Rotating an image leads to points on a 1D manifold.
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Rigid-body motion leads to a 6-dimensional manifold (not shown).
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Local linearisation through smoothing
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Spatial smoothing
can make the
manifolds more
linear with respect
to small
misregistrations.
Some information is
inevitably lost.
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One mode of geometric variability

Simulated images Principal components

A suitable model would reduce these data to a single dimension.
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Two modes of geometric variability

Simulated images Principal components

A suitable model would reduce these data to two dimensions.
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Similarity Measures

Many methods are based on similarity measures.

A common similarity measure is the dot product.

Similarity: k(x, y) =
∑

k

xkyk

Nonlinear methods are often based on distances.

Distance: d(x, y) =

√∑
k

(xk − yk )2

Similarity: k(x, y) = exp(−λd(x, y)2)

How do we best measure distances between brain images?
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Image Registration

Image registration measures distances
between images.

Often involves minimising the sum of two
terms:

Distance between the image intensities.
Distance of the deformation from zero.

The sum of these terms gives the
distance.
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Different ways of measuring distances
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Different ways of measuring distances

Two
simulated

images
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Metrics

Distances need to satisfy the properties of a metric:

1 d(x, y) ≥ 0 (non-negativity)

2 d(x, y) = 0 if and only if x = y (identity of indiscernibles)

3 d(x, y) = d(y, x) (symmetry)

4 d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

Satisfying (3) requires inverse-consistent image registration.
Satisfying (4) requires a specific class of image registration models.
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Non-Euclidean geometry

Distances are not always
measured along a straight
line.

“Shapes are the ultimate
non-linear sort of thing”
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Linear approximations to nonlinear problems
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Example Images

Some example (non-brain) images.
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Registered Images

We could register the images to their average shape...
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Deformations

...and study the deformations...
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Jacobian Determinants

...or the relative volumes...
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Scalar Momentum

... or “scalar momentum” (Singh et al, MICCAI 2010).
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Reconstructed Images

Reconstructions from template and scalar momenta.
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Real data

Used 550 T1w brain MRI from
IXI (Information eXtraction from
Images) dataset.
http://www.

brain-development.org/

Data from three different
hospitals in London:

Hammersmith Hospital
using a Philips 3T system

Guy’s Hospital using a
Philips 1.5T system

Institute of Psychiatry using
a GE 1.5T system

John Ashburner Anatomical Features
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Grey and White Matter

Segmented into
GM and WM.
Approximately
aligned via
rigid-body.

Ashburner, J & Friston, KJ. Unified segmentation. NeuroImage 26(3):839–851 (2005).
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Diffeomorphic Alignment

All GM and WM were diffeomorphically aligned to their common
average-shaped template.

Ashburner, J & Friston, KJ. Diffeomorphic registration using geodesic shooting and Gauss-Newton optimisation.
NeuroImage 55(3):954–967 (2011).
Ashburner, J & Friston, KJ. Computing average shaped tissue probability templates. NeuroImage 45(2):333–341
(2009).
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Volumetric Features

A number of features
were used for pattern
recognition.
Firstly, two features
relating to relative
volumes.
Initial velocity
divergence is similar
to logarithms of
Jacobian
determinants.

Jacobian
Determinants

Initial Velocity
Divergence
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Grey Matter Features

Rigidly Registered
GM

Nonlinearly
Registered GM

Registered and
Jacobian Scaled GM
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“Scalar Momentum” Features

“Scalar momentum”
actually has two
components because
GM was matched
with GM and WM
was matched with
WM.

First Momentum
Component

Second Momentum
Component
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Age Regression

Linear Gaussian Process Regression to predict subject ages.
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Rasmussen, CE & Williams, CKI. Gaussian processes for machine learning. Springer (2006).
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Sex Classification

Linear Gaussian Process Classification (EP) to predict sexes.
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Rasmussen, CE & Williams, CKI. Gaussian processes for machine learning. Springer (2006).
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Predictive Accuracies

Age
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Conclusions

Scalar momentum (with about 10mm smoothing) appears to
be a useful feature set.

Jacobian-scaled warped GM is surprisingly poor.

Amount of spatial smoothing makes a big difference.

Further dependencies on the details of the registration still
need exploring.
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