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The brain’s electromagnetic field (EMF)

http://www.canada-meg-consortium.org/

Time

Notation:

M/EEG signal xi [t] ∈ RN

N electrodes (32–256)

Time t = 1, . . . ,T

Trial i = 1, . . . ,M

Exp. condition ci ∈ {−1,+1}

Experimental data:

(ci ,Xi ) ∼ p(c ,X )

D = {(c1,X1), . . . , (cM ,XM)}
Typically i.i.d. sampling is
assumed
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(P.L. Nunez. Electric Fields of the Brain: The Neurophysics of EEG. Oxford University Press, 2005.)
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Decoding models

Given a certain brain-state, what is
the probability of an experimental
condition: p(c|X )?

The (optimal) Bayes classifier:
ĉi = f (Xi ) = argmaxc{p(Xi |c)}
Examples of classification methods:

I Linear discriminant analysis (LDA)
I Support Vector Machines (SVM)
I Gaussian Processes (GP)

Prediction error Pe := 1− P(ĉ = c)

Advantage: Robust against
(measurable) noise.

ĉi = sign{xi [t]− βy [t1]︸ ︷︷ ︸
f

} = ci

Disadvantage f : RN×T 7→ {−1,+1}
needs to be learned from D. xi [t1] = αci + βyi [t1]
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ĉi = sign{xi [t]− βy [t1]︸ ︷︷ ︸
f

} = ci

Disadvantage f : RN×T 7→ {−1,+1}
needs to be learned from D. xi [t1] = αci + βyi [t1]

M. Grosse-Wentrup (MPI-IS) M/EEG Decoding & BCI June 8, 2014 6 / 20



Decoding models

Given a certain brain-state, what is
the probability of an experimental
condition: p(c|X )?

The (optimal) Bayes classifier:
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Learning decoding models I

The decoder f has to be chosen from a model class F . How to choose F?

How do we determine which model generalizes best?Cross-validation!
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Learning decoding models II

f : RN×T 7→ {−1,+1} has to learned from training data D. The number
of training samples needed to find the best f ∈ F scales with

the model complexity,

and the number of features N × T .

To learn a good classifier with limited training data, we should

reduce N and T without discarding information relevant for c ,

and find a simple representation of X .
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Reducing the number of M/EEG channels (N)

Spatial filtering of M/EEG data:

y [t] = wTx[t] = wTLs[t] = gTs[t]

Source vector s[t] ∈ RK

Leadfield matrix L ∈ RN×K

Spatial filter w ∈ RN

Gain vector g ∈ RK
http:

//www.canada-meg-consortium.org/
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(Baillet, Mosher & Leahy. Electromagnetic brain mapping. IEEE Signal Processing Magazine, 2001)
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Beamforming

Unsupervised method based on a-priori knowledge of the spatial origin of
relevant sources:

Pick a cortical target source s∗

Compute the forward solution a = ls∗

Compute the M/EEG covariance
matrix Σ ∈ RN×N

Solve the optimization problem
w = argminw{wTΣw} s.t. wTa = 1

w = aTΣ−1/(aTΣ−1a)

Check the gain vector g = wTL

Apply the spatial filter: y [t] = wTx[t]

http://www.canada-meg-consortium.org/
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(Van Veen et al. Localization of brain electrical activity via LCMV spatial filtering. IEEE TBME, 1997)
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Common Spatial Patterns (CSP)

Supervised method to find spatial filters that discriminate between two
conditions:

Covariance matrices Σc=+1 & Σc=−1

Optimization problem:

w = argmaxw

{
wTΣc=+1w
wTΣc=−1w

}
Solution: Largest λ for which
Σ−1
c=+1Σc=−1w = λw

Matlab: [V,D] = eig(Σc=+1,Σc=−1)

Columns of V are spatial filters

Rows of V are spatial patterns

M. Grosse-Wentrup (MPI-IS) M/EEG Decoding & BCI June 8, 2014 11 / 20

(Ramoser et al. Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE TBME, 2000)
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Reducing the number of time points (T)

The brain cares about oscillations:

DTFT(yi [t], ω) = 1/T
∑T−1

t=0 yi [t]e−jωt

zi [ω] = log|DTFT(yi [t], ω)|
Zi = {zi [δ], zi [θ], zi [α], zi [β], zi [γ]}
For log-bandpower features, linear
decoders appear sufficient.

(van Albada & Robinson, Frontiers in
Human Neuroscience, 2013)
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Confounding by EOG-artifacts

Eye-blinking Horizontal eye-tracking
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Confounding by EMG-artifacts
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Outline

1 M/EEG Decoding Models

2 Brain-Computer Interfacing
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Large-scale brain networks

(Adapted from Fox et al., 2005)
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Can large-scale cortical networks be observed in the EEG?
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(Grosse-Wentrup & Schölkopf, High Gamma-Power Predicts Performance in SMR BCIs, Journal of Neural Engineering, 2012)



Patient GH: Neurofeedback of parietal δ-power
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Patient GH: fMRI-study
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Patient GH: fMRI-study

M. Grosse-Wentrup (MPI-IS) M/EEG Decoding & BCI June 8, 2014 19 / 20



Patient GH: fMRI-study
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