
!
!
!
!

Marcel van Gerven 
!

Computational Cognitive Neuroscience Lab 
(www.ccnlab.net) 

Artificial Intelligence Department 
Donders Centre for Cognition 

Donders Institute for Brain, Cognition and Behaviour 

Decoding conceptual representations 
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Decoding
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Whole-brain approach
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Connectivity-based approach
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Region-of-interest approach
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Searchlight approach
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Generative approach
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Decoding flavors

generative

discriminative Kay and Gallant, Nature, 2009



Discriminative approach

Figure courtesy Kai Brodersen
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= f✓(y) = argmax
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p(x | y,✓)



Example: Decoding amodal conceptual representations

• Animal and tool stimuli presented in four different 
modalities:	


• pictures	


• sounds	


• spoken words	


• written words

• What brain regions respond to concept information independent of modality?

• Can we decode conceptual representations from these areas during free recall?



Searchlight approach

Group-level significance maps:	



1. non-parametric permutation test; for each sphere in each subject:

…s1 sn

• randomly relabel trials	



• run classifier (cross-validated)	



• record accuracy	



• repeat hundreds of times

Accuracy

cutoff level α

observed accuracy



Searchlight approach

Group-level significance maps:	



	

 2. binomial test over subjects:

1 0 1 1 1 1

s1 s2 s3 s4 … sn

⇒ k

p = 1 - binocdf(k-1,n,α)

…s1 sn



Searchlight approach

Group-level significance maps:	



	

 3. Selection of significant spheres using p value FDR-corrected for nr of spheres 

…s1 sn

• sort group-level spheres according to p-values: (p1,…,pM)	



• find largest m such that pm ≤ αm/M	



• keep spheres 1,..,m



Group-level map for animal versus tool images

p
p

• Decoding of animals versus tools driven by early visual areas	


• However, could be driven by low-level visual properties…



From single modalities to amodal representations

training
testing

⇒

Simanova, I., Hagoort, P., Oostenveld, R., & van Gerven, 
M. (2014). Modality-independent decoding of semantic 
information from the human brain. Cerebral Cortex.



primary sensorimotor

convergence zones

top-down control

Decoding amodal conceptual representations

Free recall:



Probing spatiotemporal dynamics

Van de Nieuwenhuijzen et al. (2013). MEG-based decoding of the spatiotemporal dynamics of visual category perception. NeuroImage.

Also see e.g.: 	


Harrison & Tong (2009). Nature;  Sudre et al. (2012). Neuroimage; Carlson et al. (2013). JoV; King 
& DeHaene (2014). TiCS; Albers et al. (2013). Current Biology; Isik et al. (2014). J. Neurophys.



Decoding representations (discriminative approach)
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encoding model

stimulus prior
MAP estimate
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= arg max

x

{p(y | x)p(x)}

Decoding representations (generative approach)
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MAP estimate

x

⇤
= arg max

x

{p(y | x)p(x)}

Gaussian framework
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N (x;0,R)



Without confounds and ignoring the HRF, we get

Linear Gaussian encoding model

yk = X�k + ✏

This boils down to a linear Gaussian model:

p(yk | X,�k,�
2) = N (yk;X�k,�

2IN )

The least squares solution for 𝛃k given a Gaussian prior on 𝛃k is given by!

�̂k = (XX+ �IN )�1XTyk

The matrix B of regression coefficients is given by [𝛃1,…,𝛃K].



Gaussian image prior

For a Gaussian image prior                    we compute the covariance 
matrix R using a separate set of handwritten images

N (x;0,R)

R
pixel 1

pixel M

Covariance of each pixel



Gaussian decoding 

The posterior is given by!
!
!
!
with mean m ≡ QBΣ−1y and covariance Q = (R−1 + BΣ−1B⊤)−1. !

p(x | y) = N (x;m,Q)

It immediately follows that the most probable stimulus is given by

x

⇤ = m =
�
R

�1 +B⌃

�1
B

T
��1

B⌃

�1
y

Also see Thirion et al. (2006) Neuroimage!



Example: handwritten characters

Schoenmakers, S., Barth, M., Heskes, T., & van Gerven, M. A. J. (2013). Linear reconstruction 
of perceived images from human brain activity. NeuroImage, 83, 951–961



Building better encoding models

Gabor wavelet pyramid

• What is the optimal 𝒇(·)?!

• What is the optimal ε?!

• What is the optimal 𝝓(x)?

x

y = f(�(x)) + ✏

𝒇(·)𝝓(x)
(non)linear feature space forward model

See Naselaris et al. (2011). Encoding and decoding in fMRI. NeuroImage



• Conceptual representations as instantiations of 𝝓(x) 

What is the optimal 𝝓(x)? 

�1(x) = local contrast energy

�2(x) = edges and contours

...

�M (x) = objects

• How to obtain these 𝝓i(x)? 

x = image pixels (gaussian model)



• Labelling of objects and actions in each movie frame using 1364 Wordnet terms!

• Labour intensive…

𝝓(x) as a manual relabelling 

Huth, A. G., Nishimoto, S., Vu, A. T., & Gallant, J. L. (2012). A continuous semantic space describes 
the representation of thousands of object and action categories across the human brain. Neuron.



Kay et al, Nature, 2008

𝝓(x) as a canonical transformation 

Gabor wavelet pyramid (GWP)

• How to extend this strategy to more complex transformations?



‣ neurons are adapted to statistical properties of their 
environment	



‣ different brain regions respond to different statistical 
properties	



‣ nonlinear feature spaces improve encoding	



‣ can we further improve results via unsupervised learning 
of nonlinear feature spaces?

𝝓(x) as a result of unsupervised learning 



Two-layer topographic sparse coding model
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= principal component analysis whitening
= energy
= static nonlinearity

Güçlü, U., & van Gerven, M. A. J. (2014). Unsupervised Feature Learning Improves Prediction 
of Human Brain Activity in Response to Natural Images. PLoS Comp. Biol. In Press.

y = B

T�(x) with �(x) = �2(�1(x))

�1(x)

�2(x)

x



Two-layer topographic sparse coding model

Simple-cell activations given by a linear transformation of 
whitened image patches z:

�1(x) = Wz

Complex-cell activations derived from the pooled energy of 
simple cell activations

�2(s) = log

�
1 +Hs2

�

where H is a neighbourhood matrix for a square grid with 
circular boundary conditions.



Learning of simple-cell features

Matrix W is learned using randomly sampled image patches
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Sparse coding versus Gabor wavelet pyramid basis

A BSparse coding (SC) Gabor wavelet pyramid (GWP)



Analysis of voxel receptive fields
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Encoding results

*
*

*



Decoding results

image identification

image reconstruction

*
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...

Deep learning

‣ unsupervised learning of nonlinear feature 
spaces provides better encoding and 
decoding	



‣ deep neural networks offer a model of 
hierarchically structured representations in 
visual cortex	



‣ deep belief networks as generative models 
that model complex nonlinear stimulus 
properties



Decoding with deep belief networks

shallow learning

{E(v,h | z) = �hT Wv � zT Cv � zT Bh

conditional restricted Boltzmann machine:

van Gerven et al. (2010). Neural decoding with hierarchical 
generative models. Neural Computation, 1–16



deep learning

{E(v,h | z) = �hT Wv � zT Cv � zT Bh

conditional restricted Boltzmann machine:

Decoding with deep belief networks

van Gerven et al. (2010). Neural decoding with hierarchical 
generative models. Neural Computation, 1–16



High-throughput model testing

Yaminset al. (2014). Performance-optimized hierarchical models predict neural 
responses in higher visual cortex. PNAS



High-throughput model testing

Yaminset al. (2014). Performance-optimized hierarchical models predict neural 
responses in higher visual cortex. PNAS



Representational similarity analysis

Yaminset al. (2014). Performance-optimized hierarchical models predict neural 
responses in higher visual cortex. PNAS

Also see: 	


Kriegeskorte et al. (2008). Neuron; Kriegeskorte & Kievit (2013).TiCS; 
Pantazis et al. (2014). Nature.



Conclusions

➡ Discriminative approaches allow probing of representations!

➡ Generative approaches make our assumptions explicit!

➡ Linear Gaussian model as a baseline model for generative decoding!

➡ Unsupervised deep learning for high-throughput analysis
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