Experimental Design for IMRI

OHBM Advanced fMRI Educational Course 2014

Thomas Liu
UCSD Center for Functional MRI




Experimental Design

Condition 1 Condition 2  Condition 3

Design 1

Design 2

NNNE NN N BEE BN AN




Why worry about design?

e Scans are expensive.

e Subjects can be difficult to find.

* fMRI data are noisy

e A badly desighed experiment is
unlikely to yield publishable results.

If your result needs a statistician then you should design a better
experiment. --Baron Ernest Rutherford
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What to optimize?

e Statistical Efficiency: maximize
contrast of interest versus noise.

* Psychological factors: 1s the design
too boring? Minimize anticipation,
habituation, boredom, etc.
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Test Statistic

Stimulus, neural activity, field strength, vascular state

/

. parameter estimate

\/ variance of parameter estimate
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Thermal noise, physiological noise, low
frequency drifts, motion

Also depends on Experimental Design!!!
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Examples of linear time invariance. Panel A illustrates that when a neural signal is twice
another, the resulting BOLD activation is also twice as large. Panel B shows how the signals

for separate trials, shown in green, add linearly to get the BOLD activation.

From Poldrack et al , 2012
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Questions and Assumptions

Where 1s the activation?
- Assume we know the shape of the HRF

but not its amplitude.
> Or sometimes assume something about

the shape

What does the HRF look like?
- Assume we know the shape of the HRF

but not its amplitude.
—> Or sometimes assume something about
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mage-based Example




Image-based Example




Image-based Example




Fundamental Trade-off

Shape
Estimation
Efficiency

@ Periodic
Block Design

Detection Power
= Estimation Efficiency
for overall amplitude




Fundamental Trade-off
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Basis Functions

If we know something about the shape, we can use a

basis function expansion : h=Bc¢
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Here if we assume basis functions, we only need to
estimate 4 parameters as opposed to 20.




Trade-off w/ basis functions

(a) Efficiency and Power for Q = 2, with and without basis functions
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An Spectral View

Geometric View
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Optimized BOLD Perfusion
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as function
of task frequency

Wang et al
MRM 2003




Arterial Spin Labeling

Raw ASL time series
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Arterial Spin Labeling

Block Design
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Arterial Spin Labeling
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Multiple Trial Types GLM
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Multiple Trial Types Overview

Efficiency includes individual trials and also contrasts
between trials.

K
R —
" (average variance of HRF amplitude estimates
for all trial types and pairwise contrasts
1
SZ‘OZ‘ =

(average variance of HRF estimates )
S

for all trial types and pairwise contrast




Optimal Frequency

Optimal frequency of occurrence depends on weighting of
individual trials and contrasts.

Example: With Q = 2 trial types, if only contrasts are of interest p
= 0.5. If only trials are of interest, p =0.2929. If both trials and
contrasts are of interest p = 1/3.

LOENNY N ORCEA,
.




Psychological Considerations

I D R

Problems with habituation, anticipation, and boredom

Random
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Entropy

NNNE NN N BEE BN AN

H = Entropy = log2(number of possible outcomes)

2H =linear measure of randomness = proportional to efficiency

(a) Q =2, 2nd order entropy (b) Q = 3, 2nd order entropy (c) Q = 4, 2nd order entropy
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Multiple Trial Types Trade-off
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Design

As the number of trial types increases, it becomes more
difficult to achieve the theoretical trade-offs. Random
search becomes impractical and results in non-optimal
designs.

For unknown HDR, should use an m-sequence based
design when possible.

Designs based on block or m-sequences are useful for
obtaining intermediate trade-offs or for optimizing with
basis functions or correlated noise.




Optimality of m-sequences

(a) Estimation Efficiency
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Clustered m-seauences

—— A B s Ny m-sequence
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Additional Complexities

» The impact of low frequency drifts and correlated
noise -- this will change the optimal design.

» Impact of nonlinearities in the BOLD response.

» Designs where the timing is constrained by
psychology.

» In general, need to search over space of possible
solutions, taking into account these practical concerns.




Genetic Algorithms
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Genetic Algorithms
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Genetic Algorithms
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Genetic Algorithms

0.9

0.8

0.7

0.6

(0]
w

0.5
0.4
0.3
0.2

0.1

0.4

Fig.3. FJ-againstF,

T

T

CPU time (minutes)

T

100}
g0t
8o}
70}
60}
s0f
40t
30t

b5

i

20r
10f

WS-0.05 our approach

NSGA-II

WS-0.01

1 1 1 1

0.5 0.6 0.7 0.8 09 0948 1

Fa

*-values of the designs of the various approaches and CPU times spent for obtaining

these designs (WS-0.615 and WS-0.01 represent the weighted sum methods with mesh sizes 0.05 and 0.01
respectively): O, weighted sum; A, our approach; x, NSGA |l approach; !, reference line

Kao et al, Appl. Statistics, 2012




in Designs
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Optimization w/ Design Constraints
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Optimal Design for DCM
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Optimal Design for DCM
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Optimal Design for MVPA
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Short run test data
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Software Packages

AFNI: Rsfgen and 3dDeconvolve — random generation and
evaluation of designs

http://surfer.nmr.mgh.harvard.edu/optseq/ -- random search over
designs
http://www.mathworks.com/matlabcentratfileexchange/authors/
3513 -- code for generating m-sequeces
http://cfmriweb.ucsd.edu/ttliu/mttfmri toolbox.html -- code for
clustered m-sequences and other designs
http://www.nitrc.org/projects/pobe/ -- optimal designs of

multiple-subject block design experiments

Genetic Algorithms:
http://www.columbia.edu/cu/psychology/tor/software.htm AND
http://www.jstatsoft.org/v30/111/




Summary

e The “optimal” design depends on both
experimental design and assumptions about the
hemodynamic response and other factors.

e Theoretical framework provides insight into the
fundamental tradeoffs.

e Use search algorithms (such as GA) to find
optimal designs under varying assumptions.

 Open questions related to optimization with
design constraints.

e Optimization for advanced and emerging
analysis methods.




