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This Is Your Brain on Politics

Published: November 11, 2007

This article was written by Marco Iacoboni, Joshua Freedman and
Jonas Kaplan of the University of California, Los Angeles, Semel
Institute for Neuroscience; Kathleen Hall Jamieson of the Annenberg
Public Policy Center at the University of Pennsylvania; and Tom
Freedman, Bill Knapp and Kathryn Fitzgerald of FKF Applied
Research.

IN anticipation of the 2008 presidential
Multimedia election, we used functional magnetic
resonance imaging to watch the brains of a group of swing
voters as they responded to the leading presidential
candidates. Our results reveal some voter impressions on
which this election may well turn.

DEMOCRAT REPUBLICAN

Our 20 subjects — registered voters who stated that they
were open to choosing a candidate from either party next
November — included 10 men and 10 women. In late
summer, we asked them to answer a list of questions about
their political preferences, then observed their brain activity
for nearly an hour in the scanner at the Ahmanson Lovelace Brain Mapping Center at the
University of California, Los Angeles. Afterward, each subject filled out a second
questionnaire.
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This Is Your Brain on Politics



DEMOCRATS

EDWARDS

“In res
candic
media

ponse to images of Democratic
ates, men exhibited activity in the

| orbital prefrontal cortex, indicating

emotional connection and positive
feelings.”

“Images of Fred Thompson led to increased
activity in the inferior frontal cortex, a brain
structure associated with empathy.”

“Subjects who had an unfavorable view of
John Edwards responded to pictures of him
with feelings of disgust, evidenced by
increased activity in the insula, a brain area
associated with negative emotions.”



LETTER; Politics and the Brain

Published: November 14, 2007
To the Editor:

"This Is Your Brain on Politics' (Op-Ed, Nov. 11) used the results of a brain imaging study to draw conclusions about the current state of the
American electorate. The article claimed that it is possible to directly read the minds of potential voters by looking at their brain activity while they
viewed presidential candidates.

For example, activity in the amygdala in response to viewing one candidate was argued to reflect "anxiety" about the candidate, whereas activity in
other areas was argued to indicate ''feeling connected." While such reasoning appears compelling on its face, it is scientifically unfounded.

As cognitive neuroscientists who use the same brain imaging technology, we know that it is not possible to definitively determine whether a person
is anxious or feeling connected simply by looking at activity in a particular brain region. This is so because brain regions are typically engaged by
many mental states, and thus a one-to-one mapping between a brain region and a mental state is not possible.

For example, rather than simply providing a brain marker of anxiety levels, as the article assumed, we know that the amygdala is activated by
arousal and positive emotions as well. Such problems of interpretation with brain imaging studies can be avoided only by careful experimental
design, and, as with any scientific data, the peer review process is critical to understanding whether the data are sound or based on faulty
methodology.

Unfortunately, the results reported in the article were apparently not peer-reviewed, nor was sufficient detail provided to evaluate the conclusions.

As cognitive neuroscientists, we are very excited about the potential use of brain imaging techniques to better understand the psychology of
political decisions. But we are distressed by the publication of research in the press that has not undergone peer review, and that uses flawed
reasoning to draw unfounded conclusions about topics as important as the presidential election.
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Do you really love your iPhone?

Ehe New Jork Times

The Opinion Pages
buy-ology

You Love Your iPhone. Literally. Truth and Lies About

Why We Buy
By MARTIN LINDSTROM

Published: September 30, 2011 MARTIN LINDSTROM
.......... Paco Underhill

e “Earlierthisyear, | carried out an fMRI experiment to find out whether iPhones
were really, truly addictive, no less so than alcohol, cocaine, shopping or video
games. In conjunction with the San Diego-based firm MindSign Neuromarketing, |
enlisted eight men and eight women between the ages of 18 and 25. Our 16
subjects were exposed separately to audio and to video of a ringing and vibrating
iPhone...most striking of all was the flurry of activation in the insular cortex of the

brain, which is associated with feelings of love and compassion. The subjects’

orains responded to the sound of their phones as they would respond to the
oresence or proximity of a girlfriend, boyfriend or family member. In short, the

subjects didn’t demonstrate the classic brain-based signs of addiction. Instead,
they loved their iPhones.
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To the Editor:

“You Love Your iPhone. Literally,” by Martin Lindstrom (Op-Ed, Oct. 1), purports to show, using brain
imaging, that our attachment to digital devices reflects not addiction but instead the same kind of
emotion that we feel for human loved ones.

However, the evidence the writer presents does not show this.

The brain region that he points to as being “associated with feelings of love and compassion” (the
insular cortex) is active in as many as one-third of all brain imaging studies.

Further, in studies of decision making the insular cortex is more often associated with negative than
positive emotions.

The kind of reasoning that Mr. Lindstrom uses is well known to be flawed, because there is rarely a
one-to-one mapping between any brain region and a single mental state; insular cortex activity
could reflect one or more of several psychological processes.

We find it surprising that The Times would publish claims like this that lack scientific validity.

RUSSELL POLDRACK
Austin, Tex., Oct. 3, 2011

The writer is a professor of psychology and neurobiology at the University of Texas at Austin. His letter
was signed by 44 other neuroscientists.


http://www.nytimes.com/2011/10/01/opinion/you-love-your-iphone-literally.html

Does reverse inference work?
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Insula activation is weakly selective

Some voxels active in as many of 20% of studies
Yarkoni et al., 2011
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Reverse inference

e Informal reverse
inference provides
relatively weak
evidence
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Can cognitive processes be inferred
from neuroimaging data?

Russell A. Poldrack

Dopertmont of Peychology and Brain Rescssch Institute, UCLA, Los Asgeles, CA 90095 1581, USA

There s much Imerest currently In using functional
neurcimaging techniques to understand better the
nature of cognition. One particuler practice that has
become common is ‘reverse inference’, by which the
engagement of a particular cognitive process is inferred
from the activation of & particuler brain region. Such
inferences are not deductively valid, but con still provide
some information. Using & Bayesian analysis of the
BrainMap neurcimaging dstabese, | characterize the
amount of additional evidence in faver of the engage-
mant of & cognitive process that can be offered by »
reverse inference. Its usefuiness is particularly limited by
the selectivity of sctivation in the region of interest, |
argue that cognitive neurosclentists should be circum-
spect in the use of reverse inference, particulerly when
selectivity of the region in guestion cannet be estab-
lshed or is known to be weak.

Introduction
Fenctoasl resramaging techraques such an functosal
magnetic resonance imaging (IMRD provide a measure of
local berain activity in response to cognilive Lasks
undertaken during scaaning. These data allow the
cognitive meuwrosclentist to infer something about the
role of particular beain regiess in cogmitive function,
However, there is increasing use of neurvimaging data o
make the oppesite inference; that is, Lo infer the
engagumzent of particular cognitive functons based oo
activation in particular braia regions. My goal here = 10
analyze this practice, knewn as ‘rovesse inference’, and to
characterize sorme lismitatsons on the effectivesens of this
strategy. The companion paper (= this issuwe by Henson (1
discumcn o complemeatary stratogy for saing nouroims
ong to distinguish competing cognitive theories

The goal of cognitive psychology s o understand the
underlying moental architecture that sspports cognitive
functions. To this end, cognitive peychologists examine the
effects of task manipulstions o behaviera! varisbles, such
as responise Lime o accuracy, and use these dats to test
models of cognitive function. However, it is often not
pomaible Lo determmine on the baxis of bekaviara] vasiablen
alome whether a particslar cognitive prooess is engaged, or
whether a particelar theory of cognitive architecture &
correct; for example, there arv well knows examplen of
theoretical indeterminacy based on behavioral dats (2. If

yronding warhes Pablrach, R A puidoe bicls oda
A bealds widio € laissey 20
o e e D00 0D e et merter & P08 € v | ‘A

neurotmaging were able to provide information regarding
what cognitive processen worv ongaged iz performance of
a partxular task, cognitive psychologists would have
puned a powerful pew wol. Researchers oulaide cognitive
Py :b-ll}:y are also semetimes interested in using
neurcimaging (o determine the engagement of particular
coguitive precesscs. For example, plilosophess maght wish
1o know the degree to which emwtion versus delsitwentive
reasoning plays a role in moral judgments (3L

Inference in neurcimaging

Tho ussal kind of inferonce that s desws frecs nourvisss
Sng data is of the form 5 cognitive process X s engaged,
then brain area Z is active’. Perusal of the discussion
soctiosss of x fow DMRI articles will quickly roveal,
however, an epidemic of reasoning taking the following
form

1) In the presemt study, whea task comparison A was
presontod, bruin azen Z was active,

2) In other studies, when cognitive process X was
putatively engaged, then brain area Z was active.

3) Thus, the activity of aren Z in the present study
demonsirates engagemment of cognitive process X by
Lask cesnpasisen; A

Thin is & ‘reverse infervnce’, in that it ressons back-
wards from the presence of brainm activation te the
cngape=xal of a pasrticuler cognitive furetion,

In many cases the use of reverse infervace is mformal;
the presence of gnexpected activation in a particular region
is explained by refervrce o other wtudies that fousd
sctivation in the same region. However, in some studies
the reverse inference is a centenl feature. In one study (4],
sulgects were scanned uning PET while thoy pesrformed an
economic exchange task in which they had the chance to
pusish thooe who defected. Activation was ebserved in the
darsal stratum when particpants sabjected defectors to
effective punishanent; this activation was inferred to reflect
the rewarding propesties of altesistic punishesent, S
larly, a study mssing MRl in rats |5 compared activity
during pup suckling versus cocaine administration.
Greater activity in the dorsal and ventsal siristum dusing
suckling compared with cocaine adminstration bed the
authoes to coaclude that ‘pup suckding is meore rewarding
than cocaine” (p. 148), In each of thewe stadios, 5 cognitive
process Creward’) was inferred from activation in a
particular brumin symiees (the striztum). Nearsly every

poldracklab.org



Formalizing reverse inference

e How can we more formally test the predictive
ability of fMRI?

e Answer: statistical methods for prediction

e Machine learning/statistical learning/pattern
recognition

e \?'*.V"tl',". G 3
B PATTERN RECOGNITION [&
wo MACHINE LEARNING
= Pattern
Classification

Pattern Recognition
- ano Neural Networks

poldracklab.org



Creating meta-analytic brain maps

e Automated Coordinate Extraction (Yarkoni et al, 2011, Nature Methods)

e Automatically extracts activation tables from fMRI papers for 17 journals
e Current database has 5809 papers

e Good accuracy

e 84% sensitivity, 97% specificity against SumsDB manual database
e Meta-analytic maps created for each paper

e 10mm sphere placed at each focus

X Y Z Automated

12 57 -6 coordinate

33 21 15 extraction S
24 15 60

42 6 57

24 -3 57
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Neurosynth.org

neurosynth.org heta

Home Images Resources

Automated meta-analysis of the term

"working
memory"

Analysis details

# of studies: 363 [view]
% active voxels: 4.6%

Selected location

Posterior 69%
probability:

Image type: | Posterior probability 3

Thresholds:

o B 805 8 8

Direction: | Both

Coords (x,y,2): -28 +4 456

View details for this location

Search again: working memory

Download image (NIFTI format) @
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Automated meta-analysis

A Term-based Related studies Automated coordinate Meta-analysis
search Mechanisms of Directed extraction
An fMRI Investigation of
: g 1 Placebo-Induced Changes in fMRI X Y Z Study
Pain==Pp| | | "t |=—)p 23 18 45 1
| SumommmL 19 3 12 1
] SsemmsTmemTe -40 0 -16 1
H ] =R 35 -41 29 2
gy (s 2 18 33 2
""" P(PainlActivation)
B  Forward inference Reverse inference
Paln Worklng Memory?
Emotion?
Pain?
sl
& Classification
Working mem. Emotion Pain

B -

P=78% P =64% P= 87%
Select hlghest probability

Yarkoni et al., 2011, Nature Methods
poldracklab.org




Automated meta-analysis

Previous meta-analyses Automated meta-analysis

Forward Inference Reverse Inference
B (P(ActiTerm)) C (P(TermlAct))

Working
Memory

Emotion

P(T emlAct)

% %

Yarkoni et al., 2011, Nature Methods
poldracklab.org




Classification of cognitive states

e Given 2+ terms, can determine which is most likely given the
data

e Naive Bayes classifier: assumes that all features (voxels) are
independent; selects the most probable class

e Can apply this to any activation map—studies, individual
subjects, etc.

Classification
Working mem.  EEmotion Pain
D- DB -
> = 78% = 047% 8"%

Select hng.,hc.st probability

Yarkoni et al, 2011, Nature Methods
poldracklab.org




Classification of new studies

e Cross-validated classification of all studies in
database

e Select 25 high-frequency terms

e Pairwise classification: how well can we
distinguish between each pair of terms?

Yarkoni et al, 2011, Nature Methods
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Ensemble learning

emotion
semantic
verbal

encoding

Use majority vote
of naive Bayes,
|1-regularized logistic
regression, and linear
SVM

executive
recognition (!
auditory |79
spatial f
conflict
perception
pain
attention [69.
sensory
visual 79.56 79.93 84.65 7
phonological 192,64 82.64 82.5 79.29 88.64 83.67

imagery |88.88 79.78 78.72 88.0 80.0 77.47 0.02 91.03 81.0 80.59

language |78.82 71. 82, i | " ._ 78.2 91.15 84.08 76.91 Madhura Pa rikh,

episodic 82.63 85.11

Subhashini Venugopalan

social 71.44 79.87 86.52

action 78.17 82.47 69.6 77.79 ; ; Sanmi Koyejo

reward 78.14 84.01 76.52 | .06 76.84 80.87 71.11 79.43 78.28 94.77 89.42 82.5 86.35 79.13 79.18
retrieval }68 75.93 83.4 7857 78.75 76.47 78.32 78.33 69.9
. N i i i i 7
o™ A g R T IS AR« R\ o WO RS 2 @ o e W @ o O e
0o o0 A X XN 5O S AN ) K\ <0 s \C e 29% 06 [ QO D e
P AP ecogo‘ O o ef & FEAPO 008 (@ g6 &7 oF #
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Automating reverse inference

Table 2. Pearson correlations between searchlight classification
map and NeuroSynth term-based reverse inference activation

maps

Term Correlation (r)
Control 0.1451
Working 0.1159
Numerical 0.1157
Letter 0.1081
Attention 0.1062
Correct 0.1060
Cue 0.0995
Preparatory 0.0970
Load 0.0959
Hand 0.0924

The 10 most highly correlated terms are listed. From Yarktoni et al. (26).

Helfinstein et al, 2014, PNAS
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What about individual subjects?

e Can we identify cognitive states in individual
(new) subjects?

e Difficult, because:

* NoO opportunity for training
e Datais of a fundamentally different type

o Tested in samples of subjects from working memory,
emotion, and pain studies

e (Can we predict source study type?

Yarkoni et al, 2011, Nature Methods
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Classitying individual subjects

A Classification of new studies Classification of new subjects B

o
= Classified as... il Classified as. hos .,
& = WM C Y o €Y
» g @ Emotion o @ Emotion -
D =7 2 Pain O R 2 Pain
S 98 T‘
28 E N ‘i Q g
) ~ £ \ '
B : %éév" AT LA
S il o Q‘ ,’ < ?‘t '%vj
- r -8 I -
8 -
Qo -._J o
VWM Emotion Pain WM  Emotion Pain
Sens  74% Sens . 76% Sens 7T3% Sens 94% Sens 70% Sens  65%
Spec 88% Spec: 82% Spec. 92% Spec 80% Spec 86% Spec 58% : 2
True class True class BMworking memory .emotuon _pain
70%
Pam u‘ 3"&
’ ipt
Correct M‘ %; ﬁ % 64

0%

.,,i’:::;c@.@ﬁ f Eéﬁé? : @{ LD

Yarkoni et al, 2011, Nature Methods
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Using classification to understand mental structure

WM: working memory
TS: Task switching
RS: Response selection
RI: Response inhibition
CC: Cognitive control
Bl: Bilingual language

p ~ 0.6

- 04

0.2

Bl 074" 084" 08" 08" 0.78""

0.0

Lenartowicz et al, 2010, Topics in Cognitive Science
poldracklab.org



Towards meta-analytic testing of cognitive theories

Model 1 inhibition updating ..

accuracy on SSRT on accuracy on tone 2-back versus
antisaccade task stop signal task counting task 0-back accuracy

Model 2 executive function \/

Observed covariance ﬁ/
"\
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Topic modeling

Terms

Topics

Documents

1/

ecision

‘choice” “risk”

“activation’,
IITRII’ IIEPIII

n

/]

scan’,

‘nucleus
‘striatum

accumbens”
" "dopamine”

(decision making) ( fMRI ] ( basa

Neural computations underlying action-based decision

making in the human brain

Klaus Wunderlich®, Antonio Rangel**, and John P. 0'Doherty>5<

Insttie of Technoloay, Pasadens, CA; and ‘nstitute of

Technoloq. asdna. & Wi of umaie nd ol scnces. Calfornia

hology, Triny College, Dubii, relant

Edited by Ranuifo Romo,

(received for review

February 4, 2009)

Action-based decision making involves choices between different

needs to assign a value to each action and then compare them to
make a choice. Using fMRI in human subjects, we found evidence for
action-value signals in supplementary motor cortex. Separate brain

o

invol
Uimately taken, These findings diffrentiate two
value signals i the human brain: those relaing to b ua.

and those corresponding to the expected value of the action that is

Mexico, D ., Merico,

(5, 9) and amygdala (10, 1) Note tht these signls are quite
distinet from acion walue, and are o preeunors o choice
bectuse they refictthe value of he ation that were sl

o i essons e vl Sl ht v heen
found n s ntparictal core (LIP) dring scedic stion-
based choice (12, 13) are also not pure action values since

the decsi

s
suggests thal instead of serving as inputs Lo the comparison process,
they reflect ts output. Several studies found orbitofrontal cortex to
encode the vaue of diffrent soals (14-16). Although these il

decision process. Furthermore, we also found signals in the dorso-

ator, which implicates this region in the computation of the decision
itself.

ace | action value | reinforcement earning | sma | ympfc

Cumldu 4 goalkecper trying Lo stop a soccer ball during
el Kl Wit it ot of e e e o choose

bei o the left or right goal posts. Repeated play
it the same oppmm\\\ allows i o leansbout e st
tendencies, which can be used to compute the values of a left

aright jump before making a evion Dlongcsbiihed view
hology

brain makes choices among actions by first computing a value for
ach b acion,a ilmn~d4,cnm,m1.Mﬂumun!h.ha61~01
values (1-

This raises two fun
nee: (1) where in i brai are e sl o

and the action required to
obtaim them. To date,only three monkey slctrophysiology studies
have Tound evidence for he preocnce of acion alue senil for
hand and eye movemens in the sriatum during Simple decison-
making tasks This study extends their findings in three
dirctions. Firs, as ofyet no evidence has been presented for the
xtence of ation-value sigals n the human brin. Second, using

whereasthe previous ch“ophy\mlm studies have limited their
attention to the As aresult, no previous study has looked
for action-value ignals . he cortex. Th & important becatne, 5
discussed below, there are a priori reasons to believe that action

cortices. Finally, we investigate how such signals might be compared
to actually compute the decision itself and where neuronal corre-
lates of the output of this decision process are represented, a
about which very litle is known.

‘We studied these questions using IMRI in humans while subjects
performed a variant of  two-armed bandi task to obtain proba-

mcm»n neurosci
ent types of

ind (2
e Compare thowe vahies 10 gencrate 1 hojce?
An emerging theme in decision neuroscience is that organisms
need to make a number of value-related computations (o make
cven simpl chices (4). Consider the cseof stion o
fied by the goalkeeper’s problem. First, he

a ch acion nderconsertion. These signals, Known a8
action values, encode the value of cach action before choice and
regarlesofwhether it subsequetly chosen o oot whitallows
them 10 serve as inputs into th making process (5-7).
Second, these acton values are compared 10 generte a choice
Thind the vl of the pton tht st koown s thechose
value, is tracked to be able to do mn[«mumm learning. In
paricalar, by comparing the value f the outcome gencrated by the
Gecision 10 the ehosen value,th rganism can com

et

chosen option. Note that while the action values are computed
betor thedeckion s made th chosen valu and outcome ofthe
conpartorproces signulsare comp

iy growing numbr o s e found neura
mpmm it bemmad v e o vt signals, litle:
is known about how the brain encodes action values or about how

‘monetary rewards (Fig. 14). A critical feature

ofthe task was that they had 10 sect & motor response in one of
rial,

make ithera sccade b the igh of 3 luahou s oropresa

nd. T

ihat ifernt resionsof bt sorten o e lanming o

Cortcal freas at the <patial resolution avatable 1o ML, The
probabily of being rewirded on ¢ach of the two actons drficd
randomly over time and was independent of the probability of being

n the other (Fig. 1B). This characteristic ensured that

which gave us maximum sensitivity with which to dissociate the
neural representations of the two action values.

17,6 rote the paper.

g
H
g

‘nature

LETTERS

Vol 44115 June 2006

Cortical substrates for exploratory decisions in

humans

Nathaniel D. Daw'*, John P. O'Doherty’*+, Peter Dayan',

Decision making in an uncertain environment poses a (anl'h((
between the opposing demands of gathering and exploting info
‘mation. In a classic illustration of this ‘ex plmuohxplum.um.
ilemma', a gambler choosing between multiple slot machines
balances the desire to select what seems, on the s of sccum.

Less famila aption that migh turn out more advantageous (and
opte might 1 oo ane

Y pr
from i h exploration
for organisms to discover how best to harvest resources such as
food and water. In appetive choice, subsantial experimental

) theory, indicates that a dopaminergic™, striatal** and medial
prefontal network mediates learning to explot. In contast,
s been

Ben Seymour’ & Raymond J. Dolan®

This feature of
together with a model-based analysis, allowed us to study explos
tory and epliativ decisons under uniform onditions, In the
single

We asked subjects in post-task nteviews o descibe ther chaice
strategies. The majority (11 of 14) reported occasionally trying the
different slots to work out which currently had the highest payoffs
(exploring) while at other times choosing the slot they thought had
the highest payoffs (exploiting). To investigate this behaviour quan-
titatively, we considered RL (ref.2) strategies for exploration. These

diffring in

are directed. The simplest method, known as ‘c-greedy’, is undir-
ected: it chooses the ‘greedy’ option (the one believed to be best)
most of the time, but occasionally (with probability ¢) substitutes a

has
nd thologlal* perpecives s neunl b are s o
clear. Here we show, in a gambl

g task, that human subjects”

Sntraparical
sulcus are preferentially active during exploratory decisions. In
contrast, regions of striatum and ventromedial prefrontal cortex
exhibit activity characteristi of an involvement in value-based
expl d making. The results suggest 2 model of
action selection under uncertaint wolves switching
between exploratory and uplmm.v. behavioural modes, and

ide the contri-

random action. A approach is to guide explora-
Tl by xpectcd valae, a i the sofmax’rale. Wit softma, he

are determined probabilstcally on the basis of the actions’ relative
expected values. Last, exploration can additionally be directed by
awarding bonuses in this latter decision towards actions whose
consequences are uncertain: specificaly, to those for which explora-
tion will be most informative. The optimal strategy for a resticted
class of simple bandit tasks has this characteristic, a do standard
heurisics™ for exploration in more complicated KL tasks such as
urs,for which the optimal solution is computationally intractable

Wecomparedthe o hee isinet R models embocing the

subjec

Methods), an error-driven prediction algorithm that

on-related brain systms o sach of the

Exploration is a computationally refined capacity, demanding
cardl gz, Two posliltes fr s regubion s On
the one hand, we might expect th

ontrol systems'

architecture, according to which actions can be assessed with the use
of a metric that integrates both primary revard and the informa-
tional Ie
We studied patterns unnhmm.r andbrinactiviy i 14 healthy

subjects while they performed  “four-armed bandit’ ask involving
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Topic Mapping

e Each document has a loading on each topic
¢ On average, each document loads on ~6.5 topics
e Used ACE to extract activation coordinates for all 5,809 papers

e Perform voxelwise chi-square test with FDR correction to
examine association between topics and activation

Topic Documents Activation
Coordinates
emotion “...amygdala...emotion...negative..”
negative
unpleasant

Poldrack et al., 2012, PLOS Comp Biol
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Topic 61 (442 docs): memory working_memory
maintenance visual_working_memory
spatial_working_memory manipulation episodic_buffer
retention rehearsal retrieval

Poldrack et al., 2012, PLOS Comp Biol
poldracklab.org




Topic 3 (389 docs): memory episodic_memory recall
learning verbal_memory association encoding risk
visual_memory working_memory

Poldrack et al., 2012, PLOS Comp Biol
poldracklab.org




Topic 106 (391 docs): movement coordination
motor_control feedback planning integration goal
context knowledge learning

Poldrack et al., 2012, PLOS Comp Biol
poldracklab.org




(Vg
Q.
g
-
i
Q.
O
e
>\
O
s
 _-—
)
S
S
O
L
S
@)
C
—
O,
e
(Vg
=
W,

/TdSV 1NV
61°dSY LNV
€2 11S LNV
0L'ZIV NIV
02'ad aav
SL-aav.
LI'XIV OV
8l°ASd ZS
1'va ZS
9'0IL ZS
6'ALZS ZS
€dvd ZS

7 dVd ASd
9'ZS
Z'ASd ZS
8000 3490
/'ZS adg
ZL'AVO VA
92’ LV3 OHd
G'va aoo
0'ad aw
Zeva Nvo
71°a0 vd
82'va ddd
GZ'NVd XNV
€1'adnN d3d
Llzav _vda
¥Z 1S X1a
L1 HdAV

S
aa)
Q.
5
)
(V)
o
~J
Q.
~N
o
AN
'
)
()]
=
)
©
pa
O
O
(T

O
S
Q

o!

(5

4
Y
)
S

O
o
o




I\/\ega—analysis of fMRI data

m& 3..
O p e n f M R I Home View Data Sets AddaDataset FAQs ContactUs

R ﬂiﬁ'{

Freedom to Share

OpenfMRI.org is a project dedicated to the free and open sharing of
functional magnetic resonance imaging (fMRI) datasets, including raw
LOGIN data.

Create new account
Request new password

26 tasks, 482 images from 338 subjects

Poldrack et al., 2013,

Frontiers in Neuroinformatics
poldracklab.org




Classification results

Classification accuracy

0.6

o
Ul

o
N

o
w

o
N

0.1f

0.0

Linear SVM
- = RBF SVM

Logistic regression|.

2 10 20 50

100 200
# of ICA components

Whole-brain

{with linear SVM:;

48% accuracy

Poldrack et al., 2013,
Frontiers in Neuroinformatics
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Larger-scale decoding

ds017A (2): Conditional stop signal: go

ds008 (1): Stop signal: successful stop

ds011 (1): Tone counting
_[ ds003 (1): Ryme judgment

. ds011 (3): Classification: dual-task
ds052 (2): Classification: negative feed

m

ds052 (1): Classification: positive feedk
ds110 (1): Memory encoding: subseque
ds005 (1): Gamble decisions: paramett
ds051 (1): Abstract/concrete decisions:

ds102 (1): Flanker task: incongruent vs

| ds101 (1): Simon task: incorrect vs corl
ds001 (1): BART: pumps vs. control (de
ds002 (2): Classification:feedback
dsO006A (1): Mirror-reading: mirror vs. p
ds109 (1): False belief task: false belie
ds011 (4): Classification decision (no fe
. ds011 (2): Classification : single-task
ds008 (2): Conditional stop signal task:
ds007
ds107
ds002
ds002
ds007
ds007

Poldrack et al., 2013,

Frontiers in Neuroinformatics
poldracklab.org

(
(
ds108 (1): Emotion regulation: Regulat
(
(

1): Stop signal task: go

1): One-back: objects vs scram|

3): Classification decision (no fe

1): Classification: single-task
3): Stop signal task: pseudowor
2): Stop signal task: letter nami
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Conclusions

e Cognitive neuroscience needs to get formal about
describing the mental processes that are being mapped to
brain function

e Much interesting structure can be extracted using text
mining, but ultimately progress will require manual
annotation by domain experts

e Ontologies plus databases will provide the means to ask
whether the claims of psychology regarding mental
architecture are respected by the brain

poldracklab.org
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