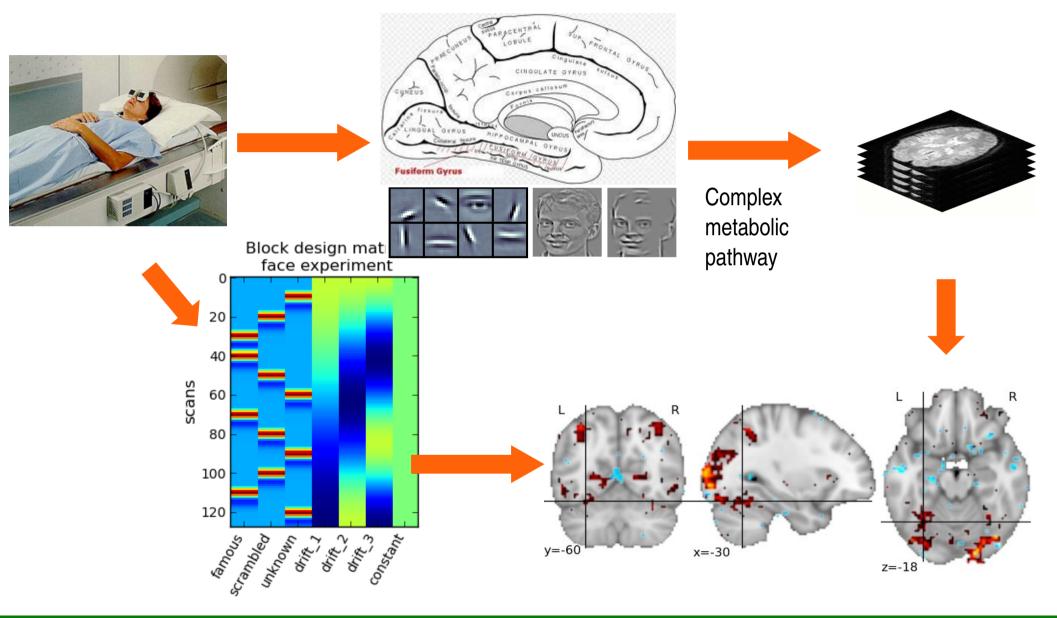
Spatial regularization and sparsity for brain mapping

Bertrand Thirion,
INRIA Saclay-Île-de-France, Parietal team
http://parietal.saclay.inria.fr

bertrand.thirion@inria.fr

FMRI data analysis pipeline



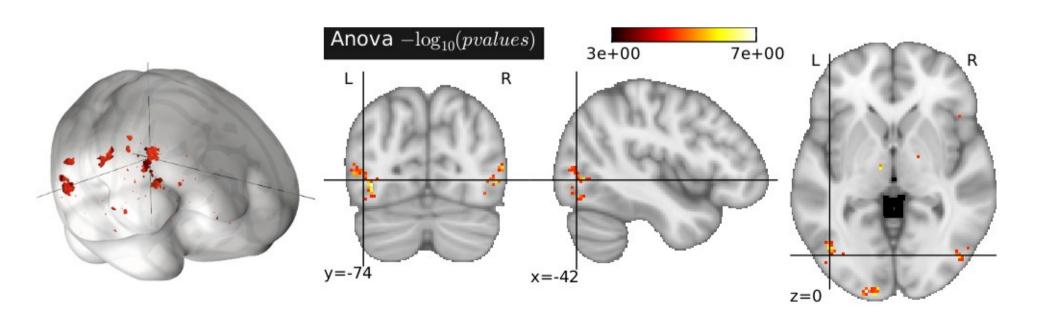
Statistical inference & MVPA

Question 1 : Is there any effect ? → omnibus test

MVPA: Can I discriminate btw the two conditions?

Question 2: What regions actually display a difference btw the two conditions?

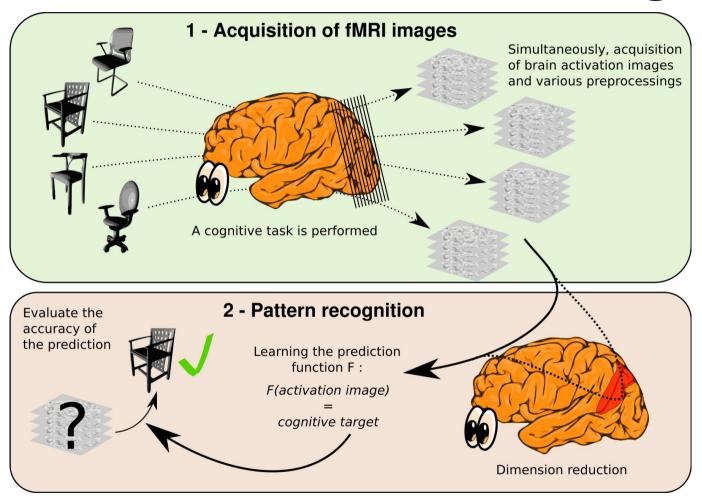
MVPA: Support of the discriminative pattern?



Outline

- Machine learning techniques for MVPA in neuroimaging
- Improving the decoder: smoothness and sparsity
- Recovery and randomness.

Reverse inference : combining the information from different regions



Aims at decoding brain activities → predicting a cognitive variable [Dehaene et al. 1998], [Haxby et al. 2001], [Cox et al. 2003]

Predictive linear model

$$y = f(X, w, b) + noise$$

y is the behavioral variable.

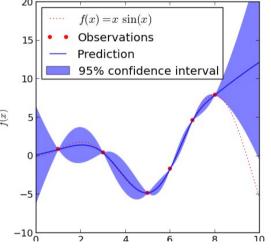
 $X \in \mathbb{R}^{n \times p}$ is the data matrix, i.e. the activations maps

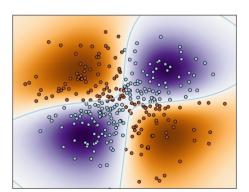
(w, b) are the parameters to be estimated.

n activation maps (samples), **p** voxels (features).

 $y \in \mathbb{R}^n \to \text{regression setting} :$ f(X, w, b) = X w + b,

 $y \in \{-1, 1\}^n \rightarrow \text{classification setting}:$ f(X, w, b) = sign(X w + b),where "sign" denotes the sign function.



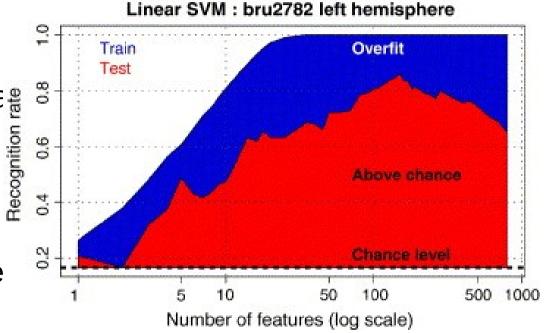


Curse of dimensionality in MVPA

Problem: p≫ n

Overfit the noise on the traged data

- Solutions
 - Prior region selection
 - Prior selection of brain re prior-bound result



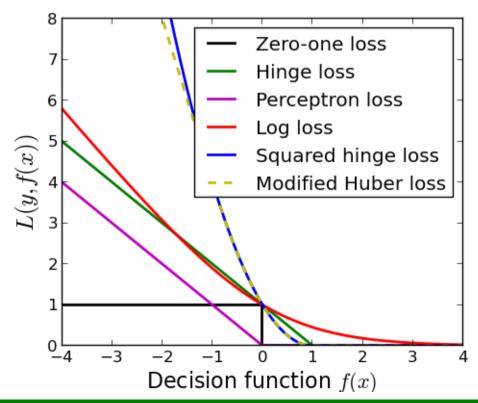
- Data-driven feature selection (e.g. Anova, RFE) :
- Univariate methods (Anova) → no optimality ?
 - Multivariate methods → combinatorial pb, computational cost
 - Regularization (e.g. Lasso, Elastic net):
- Shrink w according to your prior

Training a predictive model

• Learning w from a given training set (y, X)

$$\hat{\mathbf{w}} = \operatorname{argmin}_{w \in \mathbb{R}^p} \sum_{i=1}^n \ell(\mathbf{y_i}, \mathbf{X_i w}) + \lambda J(\mathbf{w})$$

- Choice of the loss
 - Regression: Least-squares, Hinge, Huber
 - Classification: Hinge, logistic
- Choice of the regularizer
 - Convex setting: a norm on w
 - Bayesian setting: prior distribution on w



Evaluation of the decoding

Prediction accuracy

Coefficient of determination R²:

$$R^{2}(y^{t}, \hat{y^{t}}) = \frac{\frac{1}{N} \sum_{i=1}^{N} (y_{i}^{t} - \hat{y_{i}}^{t})^{2}}{\operatorname{var}(y^{t})}$$

Classification accuracy κ:

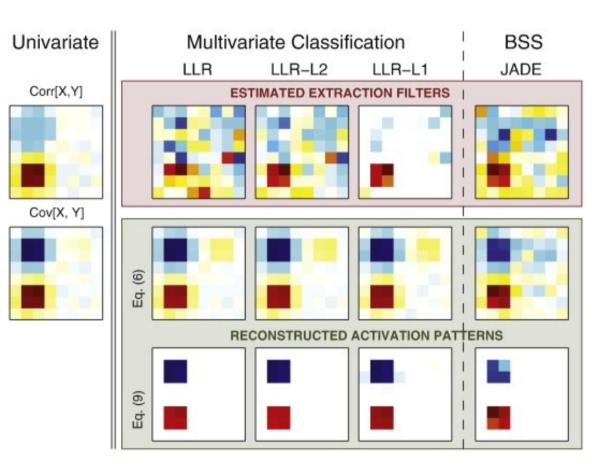
$$\kappa(y^t, \hat{y^t}) = \frac{1}{N} \sum_{i=1}^{N} \delta(y_i^t - \hat{y_i}^t)$$

→ Quantify the **amount of information** shared by the pattern and y.

Layout of the resulting maps of weights: Do we have any guarantee to **recover** the true discriminative pattern? Common hypothesis = segregation into functionally specific territories

- → **sparse**: few relevant regions implied
- → **compact structure**: grouping into connected clusters.

You said: recovery?



- MVPA cannot recover the true sources as it aims at finding a good discriminative model ("filters"), not at estimating the signal.
- X A correction taking covariance structure is necessary

- ✓ However, this can be improved by choosing relevant priors
- ✓ You might want to have a discriminative model that makes sense to you

[Haufe et al. NIMG 2013]

Outline

- Machine learning techniques for MVPA in neuroimaging
- Improving the decoder: smoothness and sparsity
- Recovery and randomness.

Regularization framework

w = the discriminative pattern

Constrain w to select few parameters that explain well the data.

→ Penalized regression

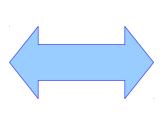
$$\hat{\mathbf{w}} = \operatorname{argmin}_{w \in \mathbb{R}^p} \ell(\mathbf{y}, \mathbf{X}\mathbf{w}) + \lambda J(\mathbf{w}), \ \lambda \ge 0$$

- $\vee \ell(y, Xw)$ is the loss function, usually $\|y Xw\|^2$ for regression
- $\sim \lambda J(w)$ is the **penalization** term.

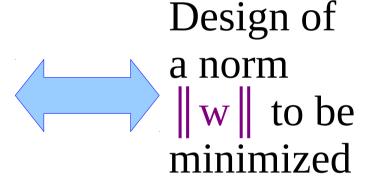
$$\lambda J(\mathbf{w}) = \lambda \|\mathbf{w}\|_2^2$$
 Ridge (no sparsity)
 $\lambda J(\mathbf{w}) = \lambda \|\mathbf{w}\|_1$ Lasso (very sparse)
 $\lambda J(\mathbf{w}) = \lambda_1 \|\mathbf{w}\|_1 + \lambda_2 \|\mathbf{w}\|_2^2$ Elastic net (sparsity + grouping)
 $\lambda J(\mathbf{w}) = \lambda_1 \|\mathbf{w}\|_1 + \lambda_2 \|\nabla \mathbf{w}\|_2^2$ Smooth lasso (sparsity + smoothness)
 $\lambda J(\mathbf{w}) = \lambda_1 \|\mathbf{w}\|_1 + \lambda_2 \|\nabla \mathbf{w}\|_1$ Total variation (piecewise sparsity)

Priors and penalization: Brain decoding = engineering problem?

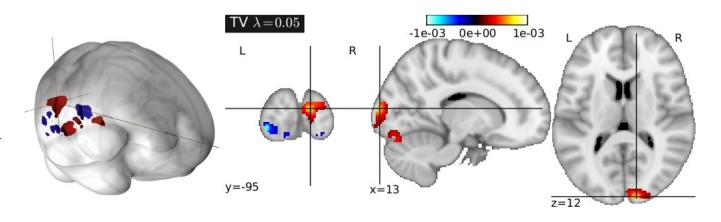
Prior on the relevant activation maps



Penalization in regularized regression



Example: Total Variation penalization [Michel et al. 2011]

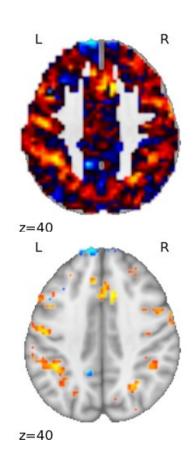


Do we need to bother about sparsity ?

Is brain activation (connectivity,..) "sparse"? No! But...

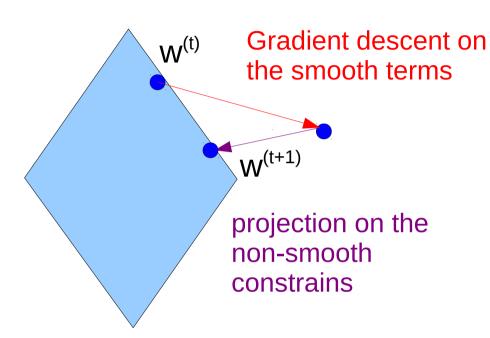
In neuroscience, people estimate discriminative patterns that look like:

But in a neuroimaging article, it will look more like



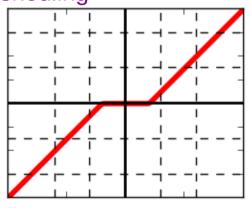
If you want to show the truly discriminative pattern, you need it to be sparse!

Solution: (F)ISTA



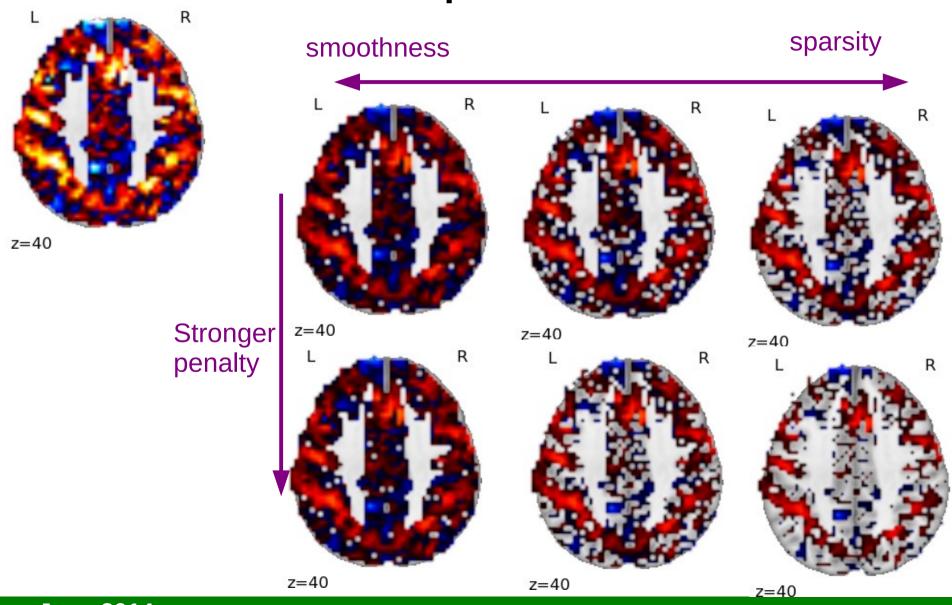
$$\boldsymbol{w}^{t+1} = prox_{\Omega}(\boldsymbol{w}^t - \nabla \ell(\boldsymbol{w}^t))$$

Lasso: the proximal operator is simply soft-threshodling

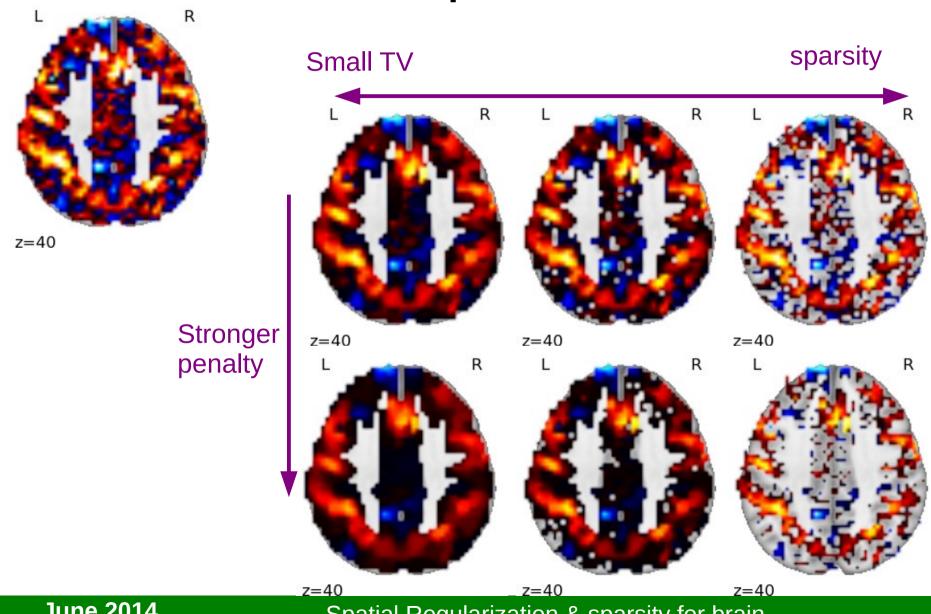


FISTA = accelerated ISTA (much faster convergence)

The smooth lasso: the proximal operator

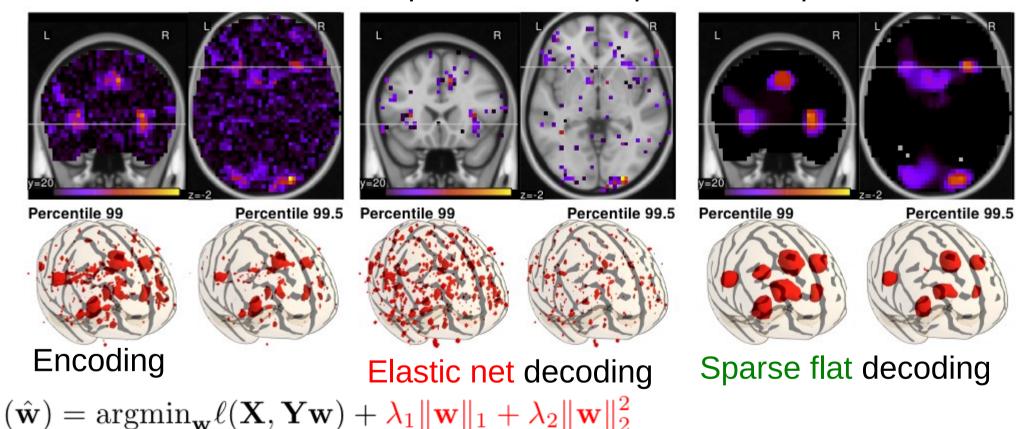


Sparse total variation: the proximal operator



What do the results look like?

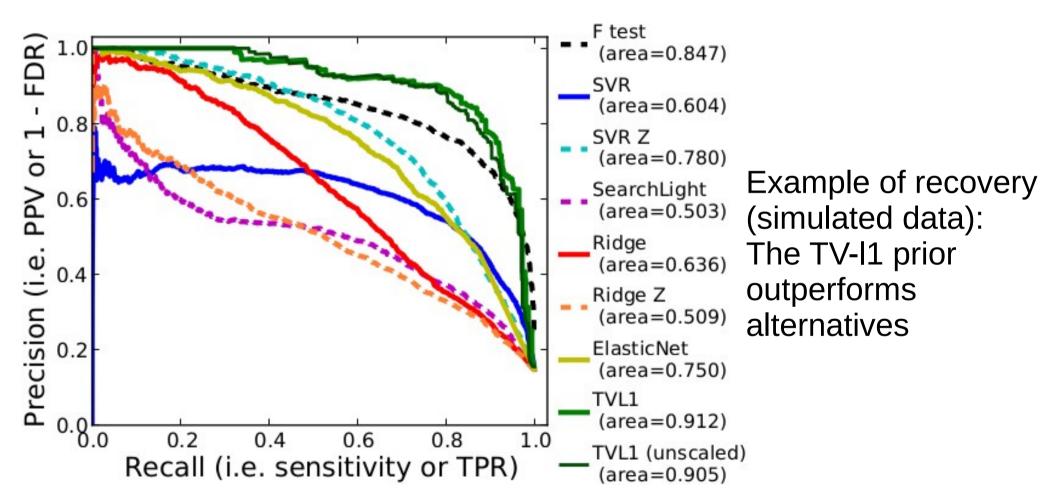
Can nevertheless be improved with adapted techniques



 $(\hat{\mathbf{w}}) = \operatorname{argmin}_{\mathbf{w}} \ell(\mathbf{X}, \mathbf{Y}\mathbf{w}) + \lambda_1 \|\mathbf{w}\|_1 + \lambda_2 \|\nabla \mathbf{w}\|_1$

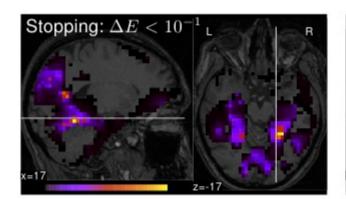
[Gramfort et al PRNI 2013]

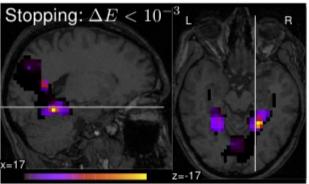
Performance on recovery (simulation)

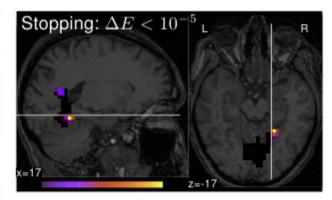


Caveat: resulting map depends on convergence tolerance

 TV-l1 estimator: stricter convergence → a different sparser map!







[Dohmatob et al. PRNI 2014]

Discussion

- Bayesian alternatives (ARD, smooth ARD) [Sabuncu et al.]
 - You lose the convexity
 - Empirical Bayes: adapts well to new data
- Cost of these methods
 - Convergence monitoring is hard
 - Smoothing + ANOVA selection + SVM is a good competitor...
- Other approaches: use of clustering for structured sparsity [Jenatton et al. SIAM 2012], even more costly!

Outline

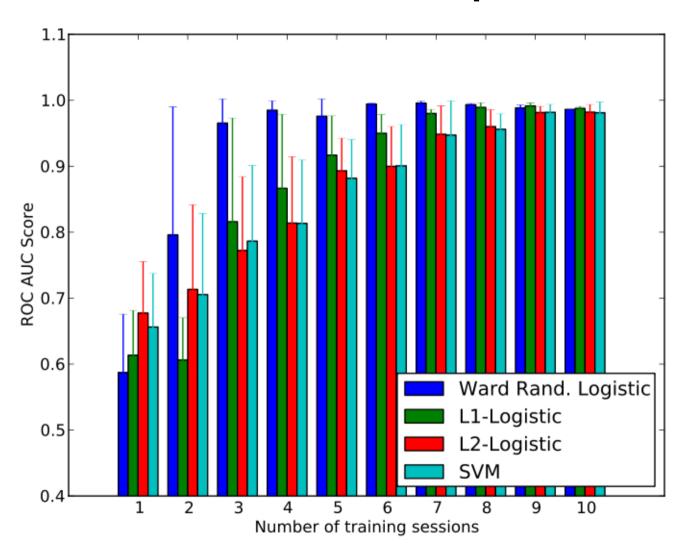
- Machine learning techniques for MVPA in neuroimaging
- Improving the decoder: smoothness and sparsity
- Recovery and randomness

Recovery...

- Prediction vs. Identification
 - Prediction: estimate w that maximizes the prediction accuracy
 - Identification or Recovery: estimate ŵ such that supp(ŵ) =supp(w)
- Compressive sensing:
 - detection of k signals out of p (voxels)
 - with only n observations << k
- Problem: data are correlated

How to measure the recovery of the set of regions? How to improve recovery

Small sample recovery



[Haxby Science 2001] dataset:

Trying to discriminate faces vs houses: level of performance achieved with limited number of samples

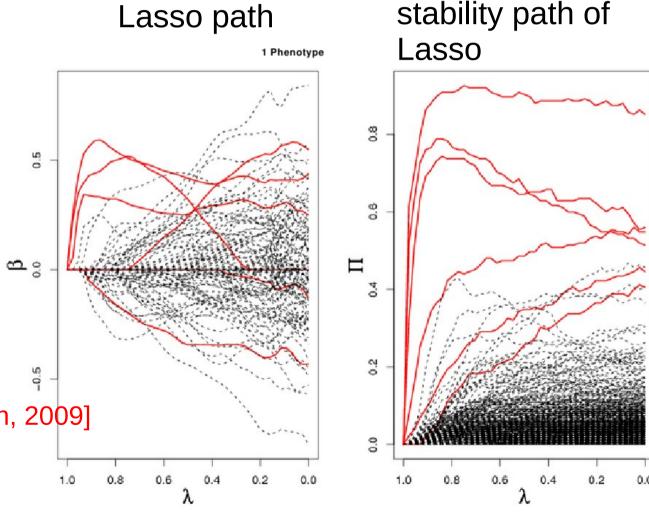
Randomization

$$\hat{w}^{lasso} = \operatorname{argmin}_{w \in \mathbb{R}^p} \|y - Xw\|^2 + \lambda \|w\|_1$$

- Stability selection

 randomization
 of the features +
 bootstrap on the
 samples
- Improved feature recovery... for few, weakly correlated features

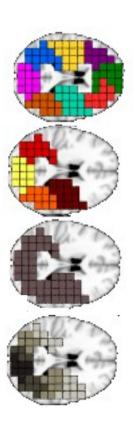
[Meinshausen and Bühlman, 2009]



Hierarchical clustering and randomized selection

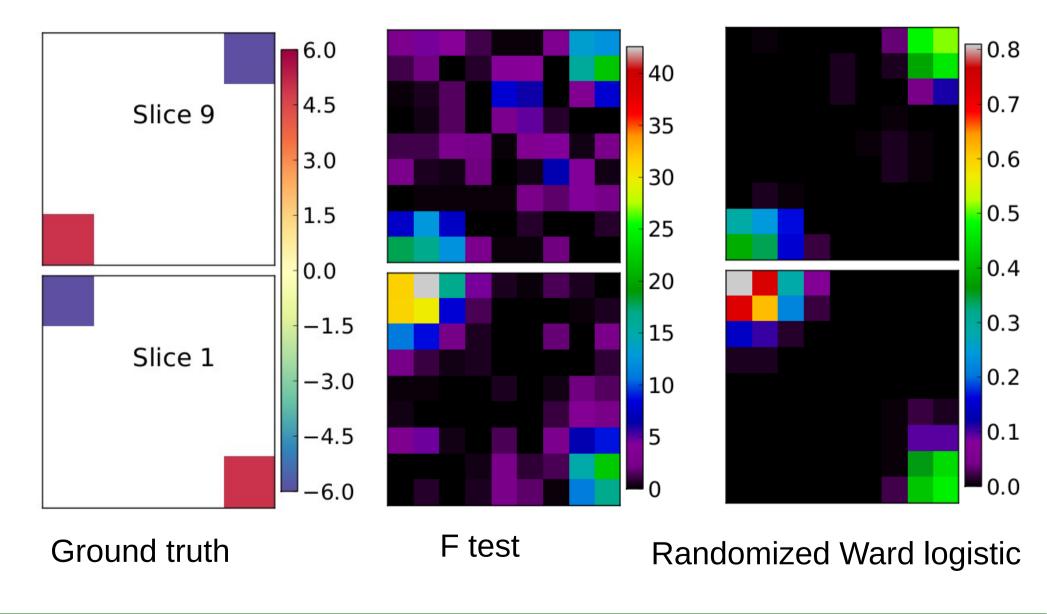
Algorithm Randomized-Ward-Logistic

- (1) Loop: randomly perturb the data
- (2) Ward agglomeration to form q features
- (3) sparse linear model on reduced features
- (4) accumulate non-zero features
- (5) threshold map of selection counts



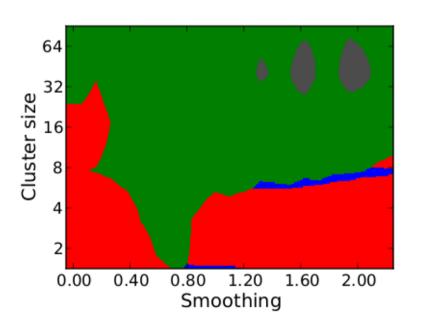
[Gramfort et al. MLINI 2011]

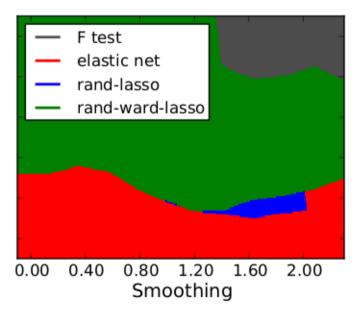
Simulation study



The best approach for feature recovery depends on the problem

 The response depends on the characteristics of the problem: smoothness (coupling between signal and noise) and clustering (redundancy of features)



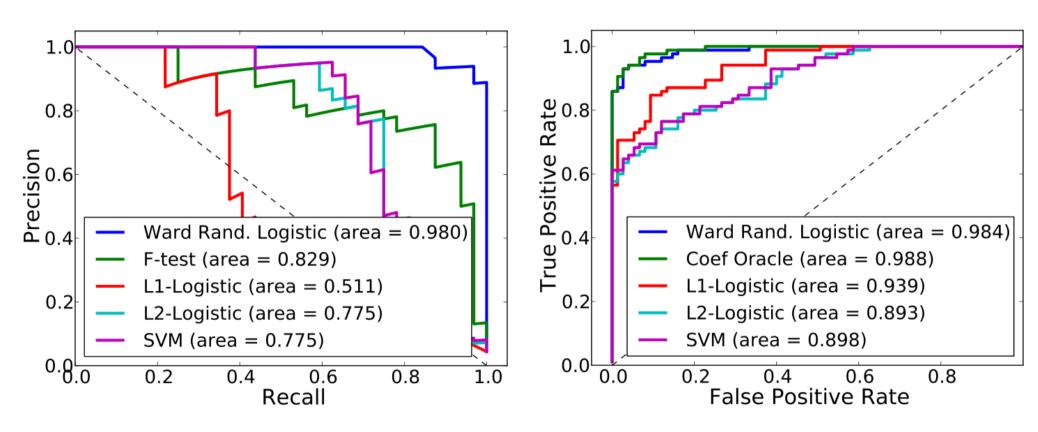


128 samples

256 samples

[Varoquaux et al. ICML 2012]

Simulation study

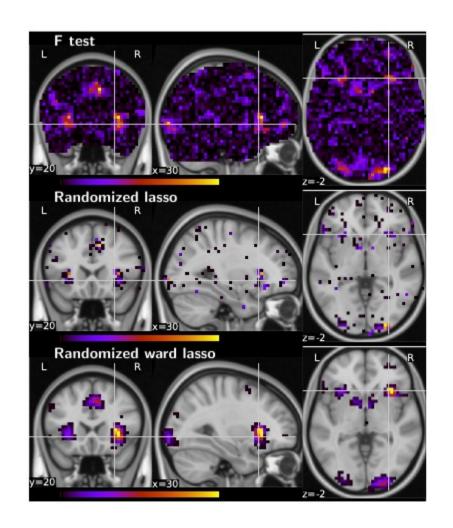


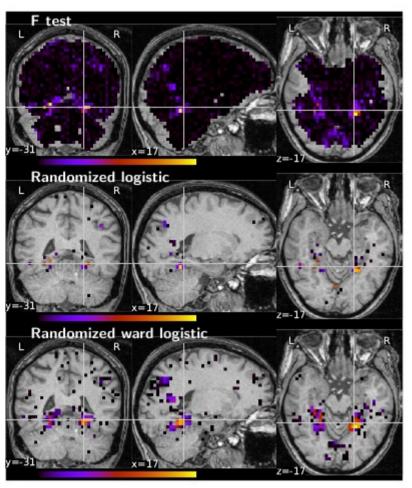
Identification accuracy

Prediction accuracy

Improves both prediction and identification!

Examples on real data



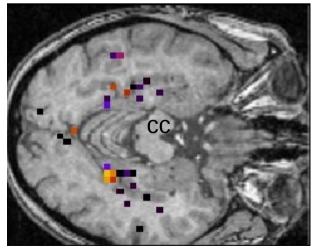


Regression task [Jimura et al. 2011]

Classification task [Haxby et al. 2001]

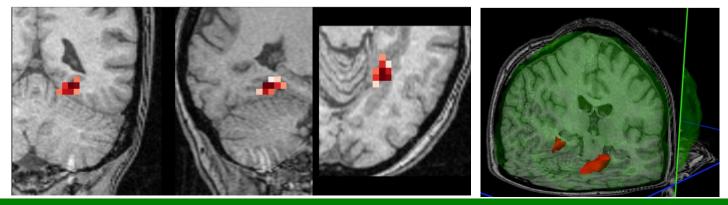
Conclusion

- SVM and sparse models less powerful than univariate methods for recovery.
- Sparsity + clustering + randomization: excellent recovery
 - ⇒ Multivariate brain mapping
- Simultaneous prediction and recovery
- X High computational cost (parameter setting)



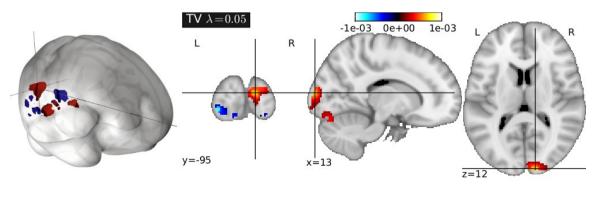
Acknowledgements

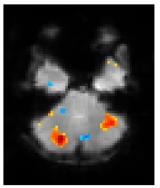
- Many thanks to my co-workers: V. Michel, G.
 Varoquaux, A. Gramfort, F. Pedregosa, P.
 Fillard, J.B. Poline, V.Fritsch, V. Siless, S.Medina,
 R. Bricquet
- To People who provide data: E.Eger, R. Poldrack, K. Jimura, J. Haxby

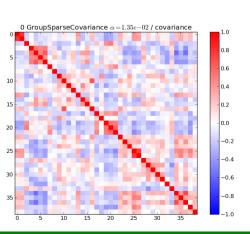


All this will land into...

- Machine learning for neuroimaging http://nilearn.github.io
- Scikit-learn-like API
- BSD, Python, OSS
 - Classification of neuroimaging data (decoding)
 - Functional connectivity analysis







Thank you for your attention

http://parietal.saclay.inria.fr

