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Statistical inference & MVPA 
Question 1 : Is there any effect ? → omnibus test

MVPA: Can I discriminate btw the two conditions ?
Question 2 : What regions actually display a difference btw the 
two conditions ?

MVPA: Support of the discriminative pattern ?
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Outline

● Machine learning techniques for MVPA in 
neuroimaging

● Improving the decoder: smoothness and 
sparsity

● Recovery and randomness.
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Reverse inference : combining the 
information from different regions

Aims at decoding brain activities → predicting a cognitive variable 
[Dehaene et al. 1998], [Haxby et al. 2001], [Cox et al. 2003]



June 2014 6Spatial Regularization & sparsity for brain 
mapping

Predictive linear model  

y is the behavioral variable.
X  R∈ n×p is the data matrix, i.e. the activations maps
(w, b) are the parameters to be estimated.
n activation maps (samples), p voxels (features).

y  R∈ n → regression setting :
f (X, w, b) = X w + b ,

y  {-1, 1}∈ n → classification setting :
f (X, w, b) = sign(X w + b) ,
where “sign” denotes the sign 

function.

 y = f (X, w, b) + noise
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Curse of dimensionality in MVPA

● Problem: p≫  n
● Overfit the noise on the training 

data
● Solutions

● Prior region selection

– Prior selection of brain regions → 
prior-bound result

● Data-driven feature selection (e.g. Anova, RFE) :

– Univariate methods (Anova) → no optimality ?
– Multivariate methods → combinatorial pb, computational cost

● Regularization (e.g. Lasso, Elastic net) :

– Shrink w according to your prior 
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Training a predictive model

● Learning w from a given 
training set (y, X)

● Choice of the loss

● Regression: Least-squares, 
Hinge, Huber

● Classification: Hinge, logistic
● Choice of the regularizer

● Convex  setting: a norm on w
●  Bayesian setting: prior 

distribution on w
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Evaluation of the decoding

Prediction accuracy

Coefficient of determination R2 : Classification accuracy κ :

→ Quantify the amount of information shared by the pattern and y.

Layout of the resulting maps of weights: Do we have 
any guarantee to recover the true discriminative pattern ?
Common hypothesis =  segregation into functionally 
specific territories
→ sparse: few relevant regions implied 
→ compact structure: grouping into connected clusters.
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You said: recovery ?

[Haufe et al. NIMG 2013]

✗ MVPA cannot recover the true 
sources as it aims at finding a good 
discriminative model (“filters”), not at 
estimating the signal.
✗ A correction taking covariance 
structure is necessary

✔ However, this can be improved by 
 choosing relevant priors
✔ You might want to have a 
discriminative model that makes 
sense to you
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● Machine learning techniques for MVPA in 
neuroimaging

● Improving the decoder: smoothness and 
sparsity

● Recovery and randomness.

Outline
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Regularization framework

w = the discriminative pattern 
Constrain w to select few parameters that explain well the data.
→ Penalized regression 

✔ ℓ(y, Xw) is the loss function, usually for regression
✔ λJ(w) is the penalization term.

Ridge (no sparsity)

Lasso (very sparse)

Elastic net (sparsity + grouping)

Smooth lasso (sparsity + smoothness)

Total variation (piecewise sparsity)
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Priors and penalization: 
Brain decoding = engineering problem ?

Prior on the 
relevant 
activation 
maps

Penalization 
in regularized 

regression

Design of 
a norm 
║w║ to be 
minimized

Example: Total 
Variation penalization 
[Michel et al. 2011]
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Do we need to bother about sparsity 
?

Is brain activation (connectivity,..) “sparse” ? No ! 
But...

In neuroscience, people estimate discriminative 
patterns that look like:

But in a neuroimaging article, it will look more like

If you want to show the truly discriminative pattern, you need it to 
be sparse !
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Solution: (F)ISTA

Gradient descent on 
the smooth terms

FISTA = accelerated ISTA (much faster convergence)

w(t)

projection on the 
non-smooth 
constrains

w(t+1)

Lasso: the proximal operator is simply 
soft-threshodling 
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The smooth lasso: the proximal 
operator

sparsitysmoothness

Stronger 
penalty
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Sparse total variation: the proximal 
operator

Stronger 
penalty

sparsitySmall TV



18

What do the results look like ?

Can nevertheless be improved with adapted techniques

[Gramfort et al PRNI 2013]

Encoding Elastic net decoding Sparse flat decoding
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Performance on recovery 
(simulation)

Example of recovery 
(simulated data):
The TV-l1 prior 
outperforms 
alternatives
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Caveat: resulting map depends on 
convergence tolerance

● TV-l1 estimator: stricter convergence → a 
different sparser map !

[Dohmatob et al. PRNI 2014]
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Discussion

● Bayesian alternatives (ARD, smooth ARD) [Sabuncu et al.]

● You lose the convexity
● Empirical Bayes: adapts well to new data

● Cost of these methods

● Convergence monitoring is hard
● Smoothing + ANOVA selection + SVM is a good competitor... 

● Other approaches: use of clustering for structured sparsity 
[Jenatton et al. SIAM 2012], even more costly !
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Outline

● Machine learning techniques for MVPA in 
neuroimaging

● Improving the decoder: smoothness and 
sparsity

● Recovery and randomness
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Recovery...

● Prediction vs. Identification

● Prediction: estimate w that maximizes the prediction 
accuracy

● Identification or Recovery: estimate ŵ such that supp(ŵ) 
=supp(w)

● Compressive sensing:

● detection of k signals out of p (voxels)
● with only n observations << k

● Problem: data are correlated

How to measure the recovery of the set of regions ?
How to improve recovery
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Small sample recovery

[Haxby Science 
2001] dataset:

Trying to 
discriminate faces 
vs houses: level of 
performance 
achieved with 
limited number of 
samples
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Randomization

● Stability selection 
= randomization 
of the features + 
bootstrap on the 
samples

● Improved feature 
recovery... for 
few, weakly 
correlated 
features

 Lasso path stability path of 
Lasso

[Meinshausen and Bühlman, 2009]
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Hierarchical clustering and 
randomized selection  

Algorithm Randomized-Ward-Logistic 

(1) Loop: randomly  perturb the data

(2)  Ward agglomeration to form q features

(3)  sparse linear model on reduced features

(4)  accumulate non-zero features

(5) threshold map of selection counts

[Gramfort et al. MLINI 2011]
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Simulation study

F testGround truth Randomized Ward logistic
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The best approach for feature 
recovery depends on the problem 

● The response depends on the characteristics of the problem: 
smoothness (coupling between signal and noise) and 
clustering (redundancy of features)

128 samples 256 samples
[Varoquaux et al. ICML 2012]
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Simulation study

Identification accuracy Prediction accuracy

Improves both prediction and identification !
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Examples on real data

Regression task 
[Jimura et al. 2011]

Classification task 
[Haxby et al. 2001]
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Conclusion

✔ SVM and sparse models less powerful than 
univariate methods for recovery. 
✔ Sparsity + clustering + randomization: excellent 
recovery

 ⇒ Multivariate brain mapping
✔ Simultaneous prediction and recovery

cc

✗ High computational 
cost (parameter 
setting)
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All this will land into...

● Machine learning for neuroimaging http://nilearn.github.io

● Scikit-learn-like API

● BSD, Python, OSS

● Classification of neuroimaging data (decoding)
● Functional connectivity analysis

http://nilearn.github.io/
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Thank you for your attention

http://parietal.saclay.inria.fr

http://parietal.saclay.inria.fr/
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